Microcirculatory blood flow as a tool to select ICU patients eligible for fluid therapy

Andrius Pranskunas, Matty Koopmans, Peter M Koetsier, Vidas Pilvinis, E Christiaan Boerma, Andrius Pranskunas, Matty Koopmans, Peter M Koetsier, Vidas Pilvinis, E Christiaan Boerma

Abstract

Purpose: The aim of this study is to assess the incidence of sublingual microcirculatory flow alterations, according to a predefined arbitrary cutoff value, in patients with "clinical signs of impaired organ perfusion". Secondary endpoints were the changes in microvascular flow index (MFI), "clinical signs of impaired organ perfusion", and stroke volume (SV) after fluid administration, and the differences between groups.

Methods: Prospective, single-center, observational study in a 22-bed mixed intensive care unit (ICU). Patients ≥18 years with invasive hemodynamic monitoring and "clinical signs of impaired organ perfusion" as the principal reason for fluid administration were included. Before and after fluid challenge, systemic hemodynamics and direct in vivo observation of the sublingual microcirculation with sidestream dark-field imaging were obtained. Microvascular flow index (MFI) <2.6 was predefined as abnormal.

Results: N = 50. At baseline, MFI <2.6 was present in 66 % of the patients. In these patients, MFI increased from 2.3 (2-2.5) at baseline to 2.5 (2.1-2.8) after fluid challenge (p = 0.003). This was accompanied by a reduction in the number of "clinical signs of impaired organ perfusion" from 2 (1-2) to 1 (0-2) (p < 0.001). However, in patients with MFI >2.6 at baseline, MFI and clinical signs changed insignificantly [2.8 (2.8-2.9) versus 2.8 (2.7-3), p = 0.45, respectively, 1 (1-2) versus 1 (1-2), p < 0.32]. These changes were not restricted to patients with a rise in SV ≥10 %.

Conclusions: These data add to the understanding that noninvasive assessment of microvascular blood flow may help to identify patients eligible for fluid therapy, and to evaluate its effect.

Figures

Fig. 1
Fig. 1
Boxplots of the microvascular flow index (MFI) in response to fluid administration in patients with MFI <2.6 (low MFI) and ≥2.6 (high MFI) at baseline. *p < 0.005
Fig. 2
Fig. 2
Change in number of “clinical signs of impaired organ perfusion” for individual patients in response to fluid administration. Closed lines low MFI group (MFI <2.6 at baseline), dotted lines high MFI group (MFI ≥2.6 at baseline). *p < 0.001

References

    1. Dellinger RP, Levy MM, Carlet JM, Bion J, Parker MM, Jaeschke R, Reinhart K, Angus DC, Brun-Buisson C, Beale R, Calandra T, Dhainaut JF, Gerlach H, Harvey M, Marini JJ, Marshall J, Ranieri M, Ramsay G, Sevransky J, Thompson BT, Townsend S, Vender JS, Zimmerman JL, Vincent JL. Surviving sepsis campaign: International Guidelines for management of severe sepsis and septic shock: 2008. Intensive Care Med. 2008;34:17–60. doi: 10.1007/s00134-007-0934-2.
    1. Vincent JL, Weil MH. Fluid challenge revisited. Crit Care Med. 2006;34:1333–1337. doi: 10.1097/01.CCM.0000214677.76535.A5.
    1. Vincent JL, Rhodes A, Perel A, Martin GS, Della Rocca G, Vallet B, Pinsky MR, Hofer CK, Teboul JL, de Boode WP, Scolletta S, Vieillard-Baron A, De Backer D, Walley KR, Maggiorini M, Singer M. Clinical review: update on hemodynamic monitoring—a consensus of 16. Crit Care. 2011;15:229. doi: 10.1186/cc10291.
    1. Michard F, Teboul JL. Predicting fluid responsiveness in ICU patients: a critical analysis of the evidence. Chest. 2002;121:2000–2008. doi: 10.1378/chest.121.6.2000.
    1. Groner W, Winkelman JW, Harris AG, Ince C, Bouma GJ, Messmer K, Nadeau RG. Orthogonal polarization spectral imaging: a new method for study of the microcirculation. Nat Med. 1999;5:1209–1212. doi: 10.1038/13529.
    1. Goedhart PT, Khalilzada M, Bezemer R, Merza J, Ince C. Sidestream dark field (SDF) imaging: a novel stroboscopic LED ring-based imaging modality for clinical assessment of the microcirculation. Opt Express. 2007;15:15101–15114. doi: 10.1364/OE.15.015101.
    1. Maier S, Holz-Hölzl C, Pajk W, Ulmer H, Hengl C, Dünser M, Haas T, Velik-Salchner C, Fries D, Greiner A, Hasibeder W, Knotzer H. Microcirculatory parameters after isotonic and hypertonic colloidal fluid resuscitation in acute hemorrhagic shock. J Trauma. 2009;66:337–345. doi: 10.1097/TA.0b013e31817dac66.
    1. Dubin A, Pozo MO, Ferrara G, Murias G, Martins E, Canullán C, Canales HS, Kanoore Edul VS, Estenssoro E, Ince C. Systemic and microcirculatory responses to progressive hemorrhage. Intensive Care Med. 2009;35:556–564. doi: 10.1007/s00134-008-1385-0.
    1. Pottecher J, Deruddre S, Teboul JL, Georger JF, Laplace C, Benhamou D, Vicaut E, Duranteau J. Both passive leg raising and intravascular volume expansion improve sublingual microcirculatory perfusion in severe sepsis and septic shock patients. Intensive Care Med. 2010;36:1867–1874. doi: 10.1007/s00134-010-1966-6.
    1. Ospina-Tascon G, Neves AP, Occhipinti G, Donadello K, Büchele G, Simion D, Chierego ML, Silva TO, Fonseca A, Vincent JL, De Backer D. Effects of fluids on microvascular perfusion in patients with severe sepsis. Intensive Care Med. 2010;36:949–955. doi: 10.1007/s00134-010-1843-3.
    1. Boerma EC, Mathura KR, van der Voort PHJ, Spronk PE, Ince C. Quantifying bedside-derived imaging of microcirculatory abnormalities in septic patients: a prospective validation study. Crit Care. 2005;9:R601–R606. doi: 10.1186/cc3809.
    1. Trzeciak S, Dellinger RP, Parrillo JE, Guglielmi M, Bajaj J, Abate NL, Arnold RC, Colilla S, Zanotti S, Hollenberg SM. Microcirculatory alterations in resuscitation and shock investigators. Early microcirculatory perfusion derangements in patients with severe sepsis and septic shock: relationship to hemodynamics, oxygen transport, and survival. Ann Emerg Med. 2007;49:88–98. doi: 10.1016/j.annemergmed.2006.08.021.
    1. Dobbe JGG, Streekstra GJ, Atasever B, van Zijderveld R, Ince C. Measurement of functional microcirculatory geometry and velocity distributions using automated image analysis. Med Biol Eng Comput. 2008;46:659–670. doi: 10.1007/s11517-008-0349-4.
    1. De Backer D, Hollenberg S, Boerma C, Goedhart P, Büchele G, Ospina-Tascon G, Dobbe I, Ince C. How to evaluate the microcirculation: report of a round table conference. Crit Care. 2007;11:R101. doi: 10.1186/cc6118.
    1. Zimmerman JE, Kramer AA, McNair DS, Malila FM. Acute physiology and chronic health evaluation (APACHE) IV: hospital mortality assessment for today’s critically ill patients. Crit Care Med. 2006;34:1297–1310. doi: 10.1097/01.CCM.0000215112.84523.F0.
    1. Vincent JL, de Mendonça A, Cantraine F, Moreno R, Takala J, Suter PM, Sprung CL, Colardyn F, Blecher S. Use of the SOFA score to assess the incidence of organ dysfunction/failure in intensive care units: results of a multicenter, prospective study. Working group on “sepsis-related problems” of the European Society of intensive care medicine. Crit Care Med. 1998;26:1793–1800. doi: 10.1097/00003246-199811000-00016.
    1. Spanos A, Jhanji S, Vivian-Smith A, Harris T, Pearse RM. Early microvascular changes in sepsis and severe sepsis. Shock. 2009
    1. Boerma EC, van der Voort PHJ, Spronk PE, Ince C. Relationship between sublingual and intestinal microcirculatory perfusion in patients with abdominal sepsis. Crit Care Med. 2007;35:1055–1060. doi: 10.1097/01.CCM.0000259527.89927.F9.
    1. Edul VSK, Enrico C, Laviolle B, Vazquez AR, Ince C, Dubin A. Quantitative assessment of the microcirculation in healthy volunteers and in patients with septic shock. Crit Care Med. 2012
    1. Jhanji S, Lee C, Watson D, Hinds C, Pearse RM. Microvascular flow and tissue oxygenation after major abdominal surgery: association with post-operative complications. Intensive Care Med. 2009;35:671–677. doi: 10.1007/s00134-008-1325-z.
    1. Arnold RC, Parrillo JE, Phillip Dellinger R, Chansky ME, Shapiro NI, Lundy DJ, Trzeciak S, Hollenberg SM. Point-of-care assessment of microvascular blood flow in critically ill patients. Intensive Care Med. 2009;35:1761–1766. doi: 10.1007/s00134-009-1517-1.
    1. De Backer D, Creteur J, Dubois MJ, Sakr Y, Vincent JL. Microvascular alterations in patients with acute severe heart failure and cardiogenic shock. Am Heart J. 2004;147:91–99. doi: 10.1016/j.ahj.2003.07.006.
    1. Sakr Y, Dubois MJ, De Backer D, Creteur J, Vincent JL. Persistent microcirculatory alterations are associated with organ failure and death in patients with septic shock. Crit Care Med. 2004;32:1825–1831. doi: 10.1097/01.CCM.0000138558.16257.3F.
    1. Sheikh MY, Javed U, Singh J, Choudhury J, Deen O, Dhah K, Peterson MW. Bedside sublingual video imaging of microcirculation in assessing bacterial infection in cirrhosis. Dig Dis Sci. 2009
    1. Trzeciak S, McCoy JV, Phillip Dellinger R, Arnold RC, Rizzuto M, Abate NL, Shapiro NI, Parrillo JE, Hollenberg SM. Microcirculatory alterations in resuscitation and shock (MARS) investigators Early increases in microcirculatory perfusion during protocol-directed resuscitation are associated with reduced multi-organ failure at 24 h in patients with sepsis. Intensive Care Med. 2008;34:2210–2217. doi: 10.1007/s00134-008-1193-6.
    1. Lansdorp B, Lemson J, van Putten MJAM, de Keijzer A, van der Hoeven JG, Pickkers P. Dynamic indices do not predict volume responsiveness in routine clinical practice. Br J Anaesth. 2012;108:395–401. doi: 10.1093/bja/aer411.
    1. Dubin A, Pozo MO, Casabella CA, Murias G, Pálizas F, Moseinco MC, Kanoore Edul VS, Estenssoro E, Ince C (2010) Comparison of 6 % hydroxyethyl starch 130/0.4 and saline solution for resuscitation of the microcirculation during the early goal-directed therapy of septic patients. J Crit Care 25(4):659.e1–659.e8. doi:10.1016/j.jcrc.2010.04.007
    1. van Haren FMP, Sleigh J, Boerma EC, La Pine M, Bahr M, Pickkers P, van der Hoeven JG. Hypertonic fluid administration in patients with septic shock: a prospective randomized controlled pilot study. Shock. 2012;37:268–275. doi: 10.1097/SHK.0b013e31823f152f.
    1. Pranskunas A, Pilvinis V, Dambrauskas Z, Rasimaviciute R, Planciuniene R, Dobozinskas P, Veikutis V, Vaitkaitis D, Boerma EC. Early course of microcirculatory perfusion in eye and digestive tract during hypodynamic sepsis. Crit Care. 2012;16:R83. doi: 10.1186/cc11341.
    1. Dubin A, Edul VS, Pozo MO, Murias G, Canullán CM, Martins EF, Ferrara G, Canales HS, Laporte M, Estenssoro E, Ince C. Persistent villi hypo-perfusion explains intra-mucosal acidosis in sheep endotoxemia. Crit Care Med. 2008;36:535–542. doi: 10.1097/01.CCM.0000300083.74726.43.

Source: PubMed

3
Prenumerera