Individuality and ethnicity eclipse a short-term dietary intervention in shaping microbiomes and viromes

Junhui Li, Robert H George Markowitz, Andrew W Brooks, Elizabeth K Mallott, Brittany A Leigh, Timothy Olszewski, Hamid Zare, Minoo Bagheri, Holly M Smith, Katie A Friese, Ismail Habibi, William M Lawrence, Charlie L Rost, Ákos Lédeczi, Angela M Eeds, Jane F Ferguson, Heidi J Silver, Seth R Bordenstein, Junhui Li, Robert H George Markowitz, Andrew W Brooks, Elizabeth K Mallott, Brittany A Leigh, Timothy Olszewski, Hamid Zare, Minoo Bagheri, Holly M Smith, Katie A Friese, Ismail Habibi, William M Lawrence, Charlie L Rost, Ákos Lédeczi, Angela M Eeds, Jane F Ferguson, Heidi J Silver, Seth R Bordenstein

Abstract

Many diseases linked with ethnic health disparities associate with changes in microbial communities in the United States, but the causes and persistence of ethnicity-associated microbiome variation are not understood. For instance, microbiome studies that strictly control for diet across ethnically diverse populations are lacking. Here, we performed multiomic profiling over a 9-day period that included a 4-day controlled vegetarian diet intervention in a defined geographic location across 36 healthy Black and White females of similar age, weight, habitual diets, and health status. We demonstrate that individuality and ethnicity account for roughly 70% to 88% and 2% to 10% of taxonomic variation, respectively, eclipsing the effects a short-term diet intervention in shaping gut and oral microbiomes and gut viromes. Persistent variation between ethnicities occurs for microbial and viral taxa and various metagenomic functions, including several gut KEGG orthologs, oral carbohydrate active enzyme categories, cluster of orthologous groups of proteins, and antibiotic-resistant gene categories. In contrast to the gut and oral microbiome data, the urine and plasma metabolites tend to decouple from ethnicity and more strongly associate with diet. These longitudinal, multiomic profiles paired with a dietary intervention illuminate previously unrecognized associations of ethnicity with metagenomic and viromic features across body sites and cohorts within a single geographic location, highlighting the importance of accounting for human microbiome variation in research, health determinants, and eventual therapies. Trial Registration: ClinicalTrials.gov ClinicalTrials.gov Identifier: NCT03314194.

Conflict of interest statement

The authors have declared that no competing interests exist.

Figures

Fig 1. Experimental design and diet profiles.
Fig 1. Experimental design and diet profiles.
(A) The VMIC study examined short-term longitudinal, multiomic data from multiple body sites over 9 days with 3 broad categories of evaluation (before: habitual diet, days −1 and 0; during: vegetarian diet, days 1 through 4; after: habitual diet, days 5 through 7). (B, C) Nutrient profiles inclusive of macro- and micronutrients (normalized by kcals) of the habitual diet and daily, vegetarian, study diets (Data underlying plot B and C can be found at S1 Data) are shown by NMDS ordination analysis based on Euclidean distance and statistically compared for significant differences by PERMANOVA. Human cliparts in plot A were created with BioRender.com. NMDS, nonmetric multidimensional scaling; PERMANOVA, permutational multivariate analysis of variance; VMIC, Vanderbilt Microbiome Innovation Center.
Fig 2. Dendrograms summarizing relationships of microbial…
Fig 2. Dendrograms summarizing relationships of microbial community compositions before, during, and after the diet.
Participants are individually colored in the branches, and ethnicities (light blue and pink) are denoted at the tips of the branches along with the before (green), during (red), and after (blue) stages of the dietary intervention. Unweighted pair group method with arithmetic mean (UPGMA) clustering trees are shown for the (A, D) gut and (B, E) oral microbial community compositions and (C, F) gut viral community composition in (A-C) cohort 1 and (D-F) cohort 2 based on Bray–Curtis distances (permutations = 999). Data underlying this figure can be found at S1 Data.
Fig 3. Ethnicity-associated variation in metagenomic communities…
Fig 3. Ethnicity-associated variation in metagenomic communities and functions.
The gradient of colors denotes variation explained by the variables, and asterisk symbol indicates p-value of PERMANOVA with Bray–Curtis distance that was performed at all combined dietary stages for taxonomy at the strain level, COGs, ARGs, and CAZymes [peptidoglycanase for virome]. adonis2(data ~ Ethnicity + Antibiotic Use + Hormonal Contraceptive, permutations = perm, method = “bray”, by = “margin”), where perm = with (data, how(nperm = 999, blocks = Day)). See S2 Fig for details of functional categories used for assembly-based PERMANOVA. Data underlying this figure can be found at S1 Data. ARG, antibiotic-resistant gene; CAZymes, carbohydrate active enzymes; COG, cluster of orthologous groups; PERMANOVA, permutational multivariate analysis of variance.
Fig 4. Ethnicity-associated variation in abundant microbial…
Fig 4. Ethnicity-associated variation in abundant microbial taxa and phage.
The 219 taxa in cohort 1 (A) and 182 taxa in cohort 2 (B) included in the phylogeny are present in all participants and have relative abundances of >1% in at least one of the gut or oral microbial metagenomes. The inner circle indicates differential taxa in the gut between the 2 ethnicities; the outer circle indicates differential taxa in the saliva between the 2 ethnicities. Pink or blue color gradients indicate FDR-adjusted p-value of significance (LinDA function in MicrobiomeStat package fitting linear mixed-effects models ‘~ Ethnicity + Antibiotic Use + Hormonal Contraceptive + (1|Day)’) for centered log-ratio transformed abundance between the 2 ethnicities. Data underlying this figure can be found at S1 Data. Pink indicates more abundant in Black participants, and blue indicates more abundant in White participants. Star indicates differential abundant taxa in the gut between the 2 ethnicities in both cohorts. Taxon name with a “G” before the name indicates the taxon was classified at the genus level.
Fig 5. Dietary intervention alters urine and…
Fig 5. Dietary intervention alters urine and plasma metabolomes.
Univariate analysis on metabolomic samples before and after a short-term diet identified 180 significantly changed total metabolites in cohort 1 and 152 metabolites in cohort 2 (PFDR < 0.05, Wilcoxon signed-rank test). Total urine metabolome compositions were not significantly different between diet stages or ethnicities in either cohort (A, E) (PFDR < 0.05, PERMANOVA). In cohort 1, 97/842 urine metabolites (D) significantly changed over the diet period, while in cohort 2, 80/835 urine metabolites (H) significantly changed. Total plasma metabolome compositions were significantly different between diet phases (I, M) in both years (PFDR < 0.05, PERMANOVA). In cohort 1, 83/796 plasma metabolites (L) significantly changed between diet phases, while in cohort 2, 72/736 plasma metabolites (P) were significantly different. Pairwise Euclidean distance between all participants and interethnic groups significantly changed in urine (B, C, F, G) and plasma (J, K, N, O) across cohorts (P < 0.05, Wilcoxon rank-sum test). Statistics in parentheses denote the removal of outlier participants (see Materials and methods, Metabolomics analysis). Individual scaled abundances are shown above by stage and by ethnicity and ordered by super pathway. Heatmaps reflect all significantly changed metabolites within cohort-matched, color-coded dots and ordered by decreasing log 10-fold change within each super pathway. Circles denote metabolites significant in both cohorts; squares represent metabolites significantly different in both cohorts and in both urine and plasma. Abundance corresponds to scaled and transformed intensity value of each metabolite. A key of ordered metabolites, fold changes, and p-values can be found in S1 Data.

References

    1. Coyte KZ, Schluter J, Foster KR. The ecology of the microbiome: Networks, competition, and stability. Science. 2015;350(6261):663–6. Epub 2015/11/07. doi: 10.1126/science.aad2602 .
    1. Xu Z, Knight R. Dietary effects on human gut microbiome diversity. Br J Nutr. 2015;113(S1):S1–S5 Epub 2014/12/11. doi: 10.1017/S0007114514004127
    1. Hills RD Jr., Pontefract BA, Mishcon HR, Black CA, Sutton SC, Theberge CR. Gut Microbiome: Profound Implications for Diet and Disease. Nutrients. 2019;11(7). Epub 2019/07/19. doi: 10.3390/nu11071613 ; PubMed Central PMCID: PMC6682904.
    1. Huttenhower C, Gevers D, Knight R, Abubucker S, Badger JH, Chinwalla AT, et al.. Structure, function and diversity of the healthy human microbiome. Nature. 2012;486(7402):207–214. doi: 10.1038/nature11234
    1. Cho I, Blaser MJ. The human microbiome: at the interface of health and disease. Nat Rev Genet. 2012;13(4):260–70. Epub 2012/03/14. doi: 10.1038/nrg3182 ; PubMed Central PMCID: PMC3418802.
    1. Huse SM, Ye Y, Zhou Y, Fodor AA. A core human microbiome as viewed through 16S rRNA sequence clusters. PLoS ONE. 2012;7(6):e34242. Epub 2012/06/22. doi: 10.1371/journal.pone.0034242 ; PubMed Central PMCID: PMC3374614.
    1. Falony G, Joossens M, Vieira-Silva S, Wang J, Darzi Y, Faust K, et al.. Population-level analysis of gut microbiome variation. Science. 2016;352(6285):560–-4. Epub 2016/04/30. doi: 10.1126/science.aad3503 .
    1. Zhernakova A, Kurilshikov A, Bonder MJ, Tigchelaar EF, Schirmer M, Vatanen T, et al.. Population-based metagenomics analysis reveals markers for gut microbiome composition and diversity. Science. 2016;352(6285):565–9. Epub 2016/04/30. doi: 10.1126/science.aad3369 ; PubMed Central PMCID: PMC5240844.
    1. Zhou W, Sailani MR, Contrepois K, Zhou Y, Ahadi S, Leopold SR, et al.. Longitudinal multi-omics of host-microbe dynamics in prediabetes. Nature. 2019;569(7758):663–71. Epub 2019/05/31. doi: 10.1038/s41586-019-1236-x ; PubMed Central PMCID: PMC6666404.
    1. Benezra A. Race in the Microbiome. Sci Technol Human Values. 2020;45(5):877–902. doi: 10.1177/0162243920911998
    1. Byrd DA, Carson TL, Williams F, Vogtmann E. Elucidating the role of the gastrointestinal microbiota in racial and ethnic health disparities. Genome Biol. 2020;21(1):192. doi: 10.1186/s13059-020-02117-w
    1. Kozik AJ. mSphere of Influence: Frameshift—a Vision for Human Microbiome Research. mSphere. 5(5):e00944–20. doi: 10.1128/mSphere.00944-20
    1. De Wolfe TJ, Arefin MR, Benezra A, Rebolleda Gómez M, Milligan-Myhre KC. Chasing Ghosts: Race, Racism, and the Future of Microbiome Research. mSystems. 6(5):e00604–21. doi: 10.1128/mSystems.00604-21
    1. Deschasaux M, Bouter KE, Prodan A, Levin E, Groen AK, Herrema H, et al.. Depicting the composition of gut microbiota in a population with varied ethnic origins but shared geography. Nat Med. 2018;24(10):1526–1531. doi: 10.1038/s41591-018-0160-1
    1. Stearns JC, Zulyniak MA, de Souza RJ, Campbell NC, Fontes M, Shaikh M, et al.. Ethnic and diet-related differences in the healthy infant microbiome. Genome Med. 2017;9(1):32. doi: 10.1186/s13073-017-0421-5
    1. Gaulke CA, Sharpton TJ. The influence of ethnicity and geography on human gut microbiome composition. Nat Med. 2018;24(10):1495–1496. doi: 10.1038/s41591-018-0210-8
    1. Brooks AW, Priya S, Blekhman R, Bordenstein SR. Gut microbiota diversity across ethnicities in the United States. PLoS Biol. 2018;16(12):e2006842. doi: 10.1371/journal.pbio.2006842
    1. Xu J, Lawley B, Wong G, Otal Navarro A, Chen L, Ying T, et al.. Ethnic diversity in infant gut microbiota is apparent before the introduction of complementary diets. Gut Microbes. 2020;11:1–12. doi: 10.1080/19490976.2019.1613124
    1. Mason MR, Nagaraja HN, Camerlengo T, Joshi V, Kumar PS. Deep Sequencing Identifies Ethnicity-Specific Bacterial Signatures in the Oral Microbiome. PLoS ONE. 2013;8(10):e77287. doi: 10.1371/journal.pone.0077287
    1. Yang Y, Zheng W, Cai Q, Shrubsole MJ, Pei Z, Brucker R, et al.. Racial Differences in the Oral Microbiome: Data from Low-Income Populations of African Ancestry and European Ancestry. mSystems. 2019;4(6):e00639–e00619. doi: 10.1128/mSystems.00639-19
    1. Ravel J, Gajer P, Abdo Z, Schneider GM, Koenig SSK, McCulle SL, et al.. Vaginal microbiome of reproductive-age women. Proc Natl Acad Sci. 2011;108(Supplement 1):4680. doi: 10.1073/pnas.1002611107
    1. Fettweis JM, Brooks JP, Serrano MG, Sheth NU, Girerd PH, Edwards DJ, et al.. Differences in vaginal microbiome in African American women versus women of European ancestry. Microbiology. 2014;160(Pt 10):2272–82. Epub 2014/07/29. doi: 10.1099/mic.0.081034-0 .
    1. Borgdorff H, Van Der Veer C, Van Houdt R, Alberts CJ, De Vries HJ, Bruisten SM, et al.. The association between ethnicity and vaginal microbiota composition in Amsterdam, the Netherlands. PLoS ONE. 2017;12(7):e0181135. doi: 10.1371/journal.pone.0181135
    1. De Angelis M, Ferrocino I, Calabrese FM, De Filippis F, Cavallo N, Siragusa S, et al.. Diet influences the functions of the human intestinal microbiome. Sci Rep. 2020;10(1):4247. Epub 2020/03/08. doi: 10.1038/s41598-020-61192-y ; PubMed Central PMCID: PMC7060259.
    1. Muegge BD, Kuczynski J, Knights D, Clemente JC, Gonzalez A, Fontana L, et al.. Diet drives convergence in gut microbiome functions across mammalian phylogeny and within humans. Science. 2011;332(6032):970–4. Epub 2011/05/21. doi: 10.1126/science.1198719 ; PubMed Central PMCID: PMC3303602.
    1. Voreades N, Kozil A, Weir TL. Diet and the development of the human intestinal microbiome. Front Microbiol. 2014;5:494. Epub 2014/10/09. doi: 10.3389/fmicb.2014.00494 ; PubMed Central PMCID: PMC4170138.
    1. Bisanz JE, Upadhyay V, Turnbaugh JA, Ly K, Turnbaugh PJ. Meta-Analysis Reveals Reproducible Gut Microbiome Alterations in Response to a High-Fat Diet. Cell Host Microbe. 2019;26(2):265–72 e4. Epub 2019/07/22. doi: 10.1016/j.chom.2019.06.013 ; PubMed Central PMCID: PMC6708278.
    1. David LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE, Wolfe BE, et al.. Diet rapidly and reproducibly alters the human gut microbiome. Nature. 2014;505:559. doi: 10.1038/nature12820
    1. Mersha TB, Abebe T. Self-reported race/ethnicity in the age of genomic research: its potential impact on understanding health disparities. Hum Genomics. 2015;9:1. Epub 2015/01/08. doi: 10.1186/s40246-014-0023-x ; PubMed Central PMCID: PMC4307746.
    1. Mobley LR, Kuo TM. United States Health Policies and Late-stage Breast and colorectal cancer diagnosis: Why such disparities by age? Health Econ Rev. 2015;5(1):58. Epub 2015/07/15. doi: 10.1186/s13561-015-0058-2 ; PubMed Central PMCID: PMC4501335.
    1. May FP, Yano EM, Provenzale D, Steers WN, Washington DL. Race, Poverty, and Mental Health Drive Colorectal Cancer Screening Disparities in the Veterans Health Administration. Med Care. 2019;57(10):773–80. Epub 2019/08/16. doi: 10.1097/MLR.0000000000001186 .
    1. McDougall JA, Blair CK, Wiggins CL, Goodwin MB, Chiu VK, Rajput A, et al.. Socioeconomic disparities in health-related quality of life among colorectal cancer survivors. J Cancer Surviv. 2019;13(3):459–67. Epub 2019/05/22. doi: 10.1007/s11764-019-00767-9 .
    1. Polite BN, Dignam JJ, Olopade OI. Colorectal cancer model of health disparities: understanding mortality differences in minority populations. J Clin Oncol. 2006;24(14):2179–87. Epub 2006/05/10. doi: 10.1200/JCO.2005.05.4775 .
    1. Stevenson DK, Wong RJ, Aghaeepour N, Angst MS, Darmstadt GL, DiGiulio DB, et al.. Understanding health disparities. J Perinatol. 2019;39(3):354–8. Epub 2018/12/19. doi: 10.1038/s41372-018-0298-1 .
    1. de Bosset V, Atashili J, Miller W, Pignone M. Health insurance-related disparities in colorectal cancer screening in Virginia. Cancer Epidemiol Biomarkers Prev. 2008;17(4):834–7. Epub 2008/04/10. doi: 10.1158/1055-9965.EPI-07-2760 .
    1. Jackson CS, Oman M, Patel AM, Vega KJ. Health disparities in colorectal cancer among racial and ethnic minorities in the United States. J Gastrointest Oncol. 2016;7(Suppl 1):S32–43. Epub 2016/04/02. doi: 10.3978/j.issn.2078-6891.2015.039 ; PubMed Central PMCID: PMC4783613.
    1. Matsuzawa Y, Nakahashi H, Konishi M, Sato R, Kawashima C, Kikuchi S, et al.. Microbiota-derived Trimethylamine N-oxide Predicts Cardiovascular Risk After STEMI. Sci Rep. 2019;9(1):11647. Epub 2019/08/14. doi: 10.1038/s41598-019-48246-6 ; PubMed Central PMCID: PMC6690996.
    1. Li XS, Obeid S, Klingenberg R, Gencer B, Mach F, Raber L, et al.. Gut microbiota-dependent trimethylamine N-oxide in acute coronary syndromes: a prognostic marker for incident cardiovascular events beyond traditional risk factors. Eur Heart J. 2017;38(11):814–24. Epub 2017/01/13. doi: 10.1093/eurheartj/ehw582 ; PubMed Central PMCID: PMC5837488.
    1. Brown JM, Hazen SL. Microbial modulation of cardiovascular disease. Nat Rev Microbiol. 2018;16(3):171–81. Epub 2018/01/09. doi: 10.1038/nrmicro.2017.149 ; PubMed Central PMCID: PMC5885760.
    1. Diard M, Bakkeren E, Cornuault JK, Moor K, Hausmann A, Sellin ME, et al.. Inflammation boosts bacteriophage transfer between Salmonella spp. Science. 2017;355(6330):1211. doi: 10.1126/science.aaf8451
    1. Oh J-H, Alexander LM, Pan M, Schueler KL, Keller MP, Attie AD, et al.. Dietary Fructose and Microbiota-Derived Short-Chain Fatty Acids Promote Bacteriophage Production in the Gut Symbiont Lactobacillus reuteri. Cell Host Microbe. 2019;25(2):273–84.e6. doi: 10.1016/j.chom.2018.11.016
    1. Kim M-S, Bae J-W. Spatial disturbances in altered mucosal and luminal gut viromes of diet-induced obese mice. Environ Microbiol. 2016;18 (5):1498–1510. doi: 10.1111/1462-2920.13182
    1. Minot S, Sinha R, Chen J, Li H, Keilbaugh SA, Wu GD, et al.. The human gut virome: inter-individual variation and dynamic response to diet. Genome Res. 2011;21(10):1616–25. Epub 2011/08/31. doi: 10.1101/gr.122705.111 .
    1. Gogokhia L, Buhrke K, Bell R, Hoffman B, Brown DG, Hanke-Gogokhia C, et al.. Expansion of Bacteriophages Is Linked to Aggravated Intestinal Inflammation and Colitis. Cell Host Microbe. 2019;25 (2):285–99.e8. doi: 10.1016/j.chom.2019.01.008 .
    1. ATSDR. Agency for Toxic Substances and Disease Registry. CDC SVI 2018 Documentation 2020.
    1. Wang NC, Bagheri M, Olszewski T, Friese KA, Smith HM, Robles ME, et al.. New-Onset Vegetarian Diet Shows Differences in Fatty Acid Metabolites in European American and African American Women. Nutr Metab Cardiovasc Dis. 2021. doi: 10.1016/j.numecd.2021.05.013
    1. Finn RD, Clements J, Eddy SR. HMMER web server: interactive sequence similarity searching. Nucleic Acids Res. 2011;39(suppl_2):W29–W37. doi: 10.1093/nar/gkr367
    1. Gibson MK, Forsberg KJ, Dantas G. Improved annotation of antibiotic resistance determinants reveals microbial resistomes cluster by ecology. ISME J. 2015;9(1):207–216. doi: 10.1038/ismej.2014.106
    1. Shkoporov AN, Clooney AG, Sutton TDS, Ryan FJ, Daly KM, Nolan JA, et al.. The Human Gut Virome Is Highly Diverse, Stable, and Individual Specific. Cell Host Microbe. 2019;26(4):527–41.e5. doi: 10.1016/j.chom.2019.09.009
    1. Goodrich JK, Waters JL, Poole AC, Sutter JL, Koren O, Blekhman R, et al.. Human genetics shape the gut microbiome. Cell. 2014;159(4):789–799. doi: 10.1016/j.cell.2014.09.053 .
    1. Goodrich JK, Davenport ER, Beaumont M, Jackson MA, Knight R, Ober C, et al.. Genetic Determinants of the Gut Microbiome in UK Twins. Cell Host Microbe. 2016;19(5):731–43. Epub 2016/05/14. doi: 10.1016/j.chom.2016.04.017 ; PubMed Central PMCID: PMC4915943.
    1. Waters JL, Ley RE. The human gut bacteria Christensenellaceae are widespread, heritable, and associated with health. BMC Biol. 2019;17(1):83. doi: 10.1186/s12915-019-0699-4
    1. Tavella T, Rampelli S, Guidarelli G, Bazzocchi A, Gasperini C, Pujos-Guillot E, et al.. Elevated gut microbiome abundance of Christensenellaceae, Porphyromonadaceae and Rikenellaceae is associated with reduced visceral adipose tissue and healthier metabolic profile in Italian elderly. Gut Microbes. 2021;13(1):1880221. doi: 10.1080/19490976.2021.1880221
    1. Mashima I, Theodorea CF, Thaweboon B, Thaweboon S, Nakazawa F. Identification of Veillonella Species in the Tongue Biofilm by Using a Novel One-Step Polymerase Chain Reaction Method. PLoS ONE. 2016;11(6):e0157516. doi: 10.1371/journal.pone.0157516
    1. Sato N, Kakuta M, Hasegawa T, Yamaguchi R, Uchino E, Kobayashi W, et al.. Metagenomic analysis of bacterial species in tongue microbiome of current and never smokers. npj Biofilms Microbiomes. 2020;6(1):11. doi: 10.1038/s41522-020-0121-6
    1. Dhariwal A, Chong J, Habib S, King IL, Agellon LB, Xia J. MicrobiomeAnalyst: a web-based tool for comprehensive statistical, visual and meta-analysis of microbiome data. Nucleic Acids Res. 2017;45(W1):W180–W188. doi: 10.1093/nar/gkx295 .
    1. Kanehisa M, Sato Y, Furumichi M, Morishima K, Tanabe M. New approach for understanding genome variations in KEGG. Nucleic Acids Res. 2018;47(D1):D590–D595. doi: 10.1093/nar/gky962
    1. Maurice Corinne F, Haiser Henry J, Turnbaugh Peter J. Xenobiotics Shape the Physiology and Gene Expression of the Active Human Gut Microbiome. Cell. 2013;152(1):39–50. doi: 10.1016/j.cell.2012.10.052
    1. Johnson CH, Gonzalez FJ. Challenges and opportunities of metabolomics. J Cell Physiol. 2012;227(8):2975–2981. doi: 10.1002/jcp.24002 .
    1. Esko T, Hirschhorn JN, Feldman HA, Hsu Y-HH, Deik AA, Clish CB, et al.. Metabolomic profiles as reliable biomarkers of dietary composition. Am J Clin Nutr. 2017;105(3):547–554. doi: 10.3945/ajcn.116.144428
    1. Wilmanski T, Rappaport N, Earls JC, Magis AT, Manor O, Lovejoy J, et al.. Blood metabolome predicts gut microbiome α-diversity in humans. Nat Biotechnol. 2019;37 (10):1217–1228. doi: 10.1038/s41587-019-0233-9
    1. National Academies of Sciences E, Medicine. Communities in action: Pathways to health equity. National Academies Press; 2017.
    1. Obasogie OK, Headen I, Mujahid MS. Race, Law, and Health Disparities: Toward a Critical Race Intervention. Annu Rev Law Soc Sci. 2017;13(1):313–329. doi: 10.1146/annurev-lawsocsci-110615-085002
    1. Bleich SN, Jarlenski MP, Bell CN, LaVeist TA. Health inequalities: trends, progress, and policy. Annu Rev Public Health. 2012;33:7–40. Epub 2012/01/06. doi: 10.1146/annurev-publhealth-031811-124658 .
    1. Centers for Disease Control and Prevention. National diabetes statistics report, 2017. Atlanta, GA: Centers for Disease Control and Prevention, US Department of Health and Human Services; 2017.
    1. Abdelsattar ZM, Wong SL, Regenbogen SE, Jomaa DM, Hardiman KM, Hendren S. Colorectal cancer outcomes and treatment patterns in patients too young for average-risk screening. Cancer. 2016;122(6):929–934. doi: 10.1002/cncr.29716
    1. Dotson JL, Kappelman MD, Chisolm DJ, Crandall WV. Racial disparities in readmission, complications, and procedures in children with Crohn’s disease. Inflamm Bowel Dis. 2015;21(4):801–808. doi: 10.1097/MIB.0000000000000325 .
    1. Nahid P, Horne DJ, Jarlsberg LG, Reiner AP, Osmond D, Hopewell PC, et al.. Racial differences in tuberculosis infection in United States communities: the coronary artery risk development in young adults study. Clin Infect Dis. 2011;53(3):291–294. doi: 10.1093/cid/cir378 .
    1. Naidoo CC, Nyawo GR, Wu BG, Walzl G, Warren RM, Segal LN, et al.. The microbiome and tuberculosis: state of the art, potential applications, and defining the clinical research agenda. Lancet Respir Med. 2019;7(10):892–906. doi: 10.1016/S2213-2600(18)30501-0
    1. Castaner O, Goday A, Park Y-M, Lee S-H, Magkos F, Shiow S-ATE, et al.. The Gut Microbiome Profile in Obesity: A Systematic Review. Int J Endocrinol. 2018;2018:4095789–. doi: 10.1155/2018/4095789 .
    1. Sharma S, Tripathi P. Gut microbiome and type 2 diabetes: where we are and where to go? J Nutr Biochem. 2019;63:101–8. doi: 10.1016/j.jnutbio.2018.10.003
    1. Saus E, Iraola-Guzmán S, Willis JR, Brunet-Vega A, Gabaldón T. Microbiome and colorectal cancer: Roles in carcinogenesis and clinical potential. Mol Aspects Med. 2019;69:93–106. doi: 10.1016/j.mam.2019.05.001
    1. Franzosa EA, Sirota-Madi A, Avila-Pacheco J, Fornelos N, Haiser HJ, Reinker S, et al.. Gut microbiome structure and metabolic activity in inflammatory bowel disease. Nat Microbiol. 2019;4(2):293–305. doi: 10.1038/s41564-018-0306-4
    1. Patini R, Staderini E, Lajolo C, Lopetuso L, Mohammed H, Rimondini L, et al.. Relationship between oral microbiota and periodontal disease: a systematic review. Eur Rev Med Pharmacol Sci. 2018;22(18):5775–88. Epub 2018/10/04. doi: 10.26355/eurrev_201809_15903 .
    1. Dunlop AL, Knight AK, Satten GA, Cutler AJ, Wright ML, Mitchell RM, et al.. Stability of the vaginal, oral, and gut microbiota across pregnancy among African American women: the effect of socioeconomic status and antibiotic exposure. PeerJ. 2019;7:e8004–e. doi: 10.7717/peerj.8004 .
    1. Willis HJ, Slavin JL. The Influence of Diet Interventions Using Whole, Plant Food on the Gut Microbiome: A Narrative Review. J Acad Nutr Diet. 2019. doi: 10.1016/j.jand.2019.09.017
    1. Maier L, Pruteanu M, Kuhn M, Zeller G, Telzerow A, Anderson EE, et al.. Extensive impact of non-antibiotic drugs on human gut bacteria. Nature. 2018;555(7698):623–628. doi: 10.1038/nature25979
    1. Blaser MJ. Antibiotic use and its consequences for the normal microbiome. Science. 2016;352(6285):544. doi: 10.1126/science.aad9358
    1. Olesen SW, Grad YH. Racial/ethnic disparities in antimicrobial drug use, United States, 2014–2015. Emerg Infect Dis. 2018;24(11):2126. doi: 10.3201/eid2411.180762
    1. Cantarel BL, Lombard V, Henrissat B. Complex carbohydrate utilization by the healthy human microbiome. PLoS ONE. 2012;7(6):e28742–e. Epub 2012/06/13. doi: 10.1371/journal.pone.0028742 .
    1. Vangay P, Johnson AJ, Ward TL, Al-Ghalith GA, Shields-Cutler RR, Hillmann BM, et al.. US Immigration Westernizes the Human Gut Microbiome. Cell. 2018;175(4):962–72.e10. doi: 10.1016/j.cell.2018.10.029
    1. Smits SA, Leach J, Sonnenburg ED, Gonzalez CG, Lichtman JS, Reid G, et al.. Seasonal cycling in the gut microbiome of the Hadza hunter-gatherers of Tanzania. Science. 2017;357(6353):802. doi: 10.1126/science.aan4834
    1. Wade WG. The oral microbiome in health and disease. Pharmacol Res. 2013;69(1):137–43. doi: 10.1016/j.phrs.2012.11.006
    1. Suzuki TA, Ley RE. The role of the microbiota in human genetic adaptation. Science. 2020;370(6521):eaaz6827. doi: 10.1126/science.aaz6827
    1. Poole AC, Goodrich JK, Youngblut ND, Luque GG, Ruaud A, Sutter JL, et al.. Human Salivary Amylase Gene Copy Number Impacts Oral and Gut Microbiomes. Cell Host Microbe. 2019;25(4):553–64.e7. doi: 10.1016/j.chom.2019.03.001
    1. Lim MY, You HJ, Yoon HS, Kwon B, Lee JY, Lee S, et al.. The effect of heritability and host genetics on the gut microbiota and metabolic syndrome. Gut. 2017;66(6):1031–8. Epub 2016/04/08. doi: 10.1136/gutjnl-2015-311326 .
    1. Turpin W, Espin-Garcia O, Xu W, Silverberg MS, Kevans D, Smith MI, et al.. Association of host genome with intestinal microbial composition in a large healthy cohort. Nat Genet. 2016;48(11):1413–7. Epub 2016/10/28. doi: 10.1038/ng.3693 .
    1. Morotomi M, Nagai F, Watanabe Y. Description of Christensenella minuta gen. nov., sp. nov., isolated from human faeces, which forms a distinct branch in the order Clostridiales, and proposal of Christensenellaceae fam. nov. Int J Syst Evol Microbiol. 2012;62(1):144–149.
    1. Rogosa M, Krichevsky MI, Bishop FS. Truncated Glycolytic System in Veillonella. J Bacteriol. 1965;90(1):164–171. doi: 10.1128/jb.90.1.164-171.1965 .
    1. Scheiman J, Luber JM, Chavkin TA, MacDonald T, Tung A, Pham L-D, et al.. Meta-omics analysis of elite athletes identifies a performance-enhancing microbe that functions via lactate metabolism. Nat Med. 2019. doi: 10.1038/s41591-019-0485-4
    1. Peters BA, Yi SS, Beasley JM, Cobbs EN, Choi HS, Beggs DB, et al.. US nativity and dietary acculturation impact the gut microbiome in a diverse US population. ISME J. 2020;14(7):1639–1650. doi: 10.1038/s41396-020-0630-6
    1. Ang QY, Alba DL, Upadhyay V, Bisanz JE, Cai J, Lee HL, et al.. Differences in the gut microbiomes of distinct ethnicities within the same geographic area are linked to host metabolic health. bioRxiv. 2021:2020.10.23.352807. doi: 10.1101/2020.10.23.352807
    1. De Filippo C, Cavalieri D, Di Paola M, Ramazzotti M, Poullet JB, Massart S, et al.. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc Natl Acad Sci. 2010;107(33):14691. doi: 10.1073/pnas.1005963107
    1. Yatsunenko T, Rey FE, Manary MJ, Trehan I, Dominguez-Bello MG, Contreras M, et al.. Human gut microbiome viewed across age and geography. Nature. 2012;486(7402):222–227. doi: 10.1038/nature11053
    1. Blekhman R, Goodrich JK, Huang K, Sun Q, Bukowski R, Bell JT, et al.. Host genetic variation impacts microbiome composition across human body sites. Genome Biol. 2015;16(1):191. doi: 10.1186/s13059-015-0759-1
    1. Jha AR, Davenport ER, Gautam Y, Bhandari D, Tandukar S, Ng KM, et al.. Gut microbiome transition across a lifestyle gradient in Himalaya. PLoS Biol. 2018;16(11):e2005396. doi: 10.1371/journal.pbio.2005396
    1. Amato KR, Arrieta M-C, Azad MB, Bailey MT, Broussard JL, Bruggeling CE, et al.. The human gut microbiome and health inequities. Proc Natl Acad Sci. 2021;118(25):e2017947118. doi: 10.1073/pnas.2017947118
    1. Fouladi F, Bailey MJ, Patterson WB, Sioda M, Blakley IC, Fodor AA, et al.. Air pollution exposure is associated with the gut microbiome as revealed by shotgun metagenomic sequencing. Environ Int. 2020;138:105604. doi: 10.1016/j.envint.2020.105604
    1. Bowyer RC, Jackson MA, Le Roy CI, Ni Lochlainn M, Spector TD, Dowd JB, et al.. Socioeconomic status and the gut microbiome: a TwinsUK cohort study. Microorganisms. 2019;7(1):17. doi: 10.3390/microorganisms7010017
    1. Bailey MT, Dowd SE, Galley JD, Hufnagle AR, Allen RG, Lyte M. Exposure to a social stressor alters the structure of the intestinal microbiota: implications for stressor-induced immunomodulation. Brain Behav Immun. 2011;25(3):397–407. Epub 2010/10/30. doi: 10.1016/j.bbi.2010.10.023 .
    1. Sankaranarayanan K, Ozga AT, Warinner C, Tito RY, Obregon-Tito AJ, Xu J, et al.. Gut Microbiome Diversity among Cheyenne and Arapaho Individuals from Western Oklahoma. Curr Biol. 2015;25(24):3161–3169. doi: 10.1016/j.cub.2015.10.060
    1. Dwiyanto J, Hussain MH, Reidpath D, Ong KS, Qasim A, Lee SWH, et al.. Ethnicity influences the gut microbiota of individuals sharing a geographical location: a cross-sectional study from a middle-income country. Sci Rep. 2021;11(1):2618. doi: 10.1038/s41598-021-82311-3
    1. Visconti A, Le Roy CI, Rosa F, Rossi N, Martin TC, Mohney RP, et al.. Interplay between the human gut microbiome and host metabolism. Nat Commun. 2019;10(1):4505. doi: 10.1038/s41467-019-12476-z
    1. Heintz-Buschart A, Wilmes P. Human Gut Microbiome: Function Matters. Trends Microbiol. 2018;26(7):563–74. doi: 10.1016/j.tim.2017.11.002
    1. Jain A, Li XH, Chen WN. An untargeted fecal and urine metabolomics analysis of the interplay between the gut microbiome, diet and human metabolism in Indian and Chinese adults. Sci Rep. 2019;9 (1):9191. doi: 10.1038/s41598-019-45640-y
    1. Shankar V, Gouda M, Moncivaiz J, Gordon A, Reo NV, Hussein L, et al.. Differences in Gut Metabolites and Microbial Composition and Functions between Egyptian and U.S. Children Are Consistent with Their Diets. mSystems. 2017;2(1):e00169–e00116. doi: 10.1128/mSystems.00169-16
    1. Trim galore Krueger F. A wrapper tool around Cutadapt and FastQC to consistently apply quality and adapter trimming to FastQ files. 2015;516:517.
    1. Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012;9(4):357–359. doi: 10.1038/nmeth.1923
    1. Li D, Liu C-M, Luo R, Sadakane K, Lam T-W. MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics. 2015;31(10):1674–1676. doi: 10.1093/bioinformatics/btv033
    1. Hillmann B, Al-Ghalith GA, Shields-Cutler RR, Zhu Q, Gohl DM, Beckman KB, et al.. Evaluating the Information Content of Shallow Shotgun Metagenomics. mSystems. 2018;3(6):e00069–e00018. doi: 10.1128/mSystems.00069-18
    1. Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics (Oxford, England). 2009;25(14):1754–60. Epub 2009/05/18. doi: 10.1093/bioinformatics/btp324 .
    1. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al.. The Sequence Alignment/Map format and SAMtools. Bioinformatics. 2009;25(16):2078–2079. doi: 10.1093/bioinformatics/btp352
    1. Menzel P, Ng KL, Krogh A. Fast and sensitive taxonomic classification for metagenomics with Kaiju. Nat Commun. 2016;7(1):11257. doi: 10.1038/ncomms11257
    1. Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics. 2014;30(14):2068–2069. doi: 10.1093/bioinformatics/btu153
    1. Hyatt D, Chen G-L, Locascio PF, Land ML, Larimer FW, Hauser LJ. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics. 2010;11:119–. doi: 10.1186/1471-2105-11-119 .
    1. Zhang H, Yohe T, Huang L, Entwistle S, Wu P, Yang Z, et al.. dbCAN2: a meta server for automated carbohydrate-active enzyme annotation. Nucleic Acids Res. 2018;46(W1):W95–W101. doi: 10.1093/nar/gky418 .
    1. Franzosa EA, McIver LJ, Rahnavard G, Thompson LR, Schirmer M, Weingart G, et al.. Species-level functional profiling of metagenomes and metatranscriptomes. Nat Methods. 2018;15(11):962–968. doi: 10.1038/s41592-018-0176-y
    1. Kaminski J, Gibson MK, Franzosa EA, Segata N, Dantas G, Huttenhower C. High-Specificity Targeted Functional Profiling in Microbial Communities with ShortBRED. PLoS Comput Biol. 2015;11(12):e1004557. doi: 10.1371/journal.pcbi.1004557
    1. Castro-Mejía JL, Muhammed MK, Kot W, Neve H, Franz CMAP, Hansen LH, et al.. Optimizing protocols for extraction of bacteriophages prior to metagenomic analyses of phage communities in the human gut. Microbiome. 2015;3(1):64. doi: 10.1186/s40168-015-0131-4
    1. Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics (Oxford, England). 2014;30(15):2114–20. Epub 2014/04/01. doi: 10.1093/bioinformatics/btu170 .
    1. Roux S, Enault F, Hurwitz BL, Sullivan MB. VirSorter: mining viral signal from microbial genomic data. PeerJ. 2015;3:e985–e. doi: 10.7717/peerj.985 .
    1. Bolduc B, Youens-Clark K, Roux S, Hurwitz BL, Sullivan MB. iVirus: facilitating new insights in viral ecology with software and community data sets imbedded in a cyberinfrastructure. ISME J. 2017;11(1):7–14. Epub 2016/07/15. doi: 10.1038/ismej.2016.89 .
    1. von Meijenfeldt FAB, Arkhipova K, Cambuy DD, Coutinho FH, Dutilh BE. Robust taxonomic classification of uncharted microbial sequences and bins with CAT and BAT. Genome Biol. 2019;20(1):217. doi: 10.1186/s13059-019-1817-x
    1. Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, et al.. Package ‘vegan’. Community ecology package. 2013;2(9).
    1. Zhou H, He K, Chen J, Zhang X. LinDA: Linear models for differential abundance analysis of microbiome compositional data. arXiv. preprint arXiv:210400242. 2021.
    1. Letunic I, Bork P. Interactive tree of life (iTOL) v3: an online tool for the display and annotation of phylogenetic and other trees. Nucleic Acids Res. 2016;44(W1):W242–W5. Epub 2016/04/19. doi: 10.1093/nar/gkw290 .

Source: PubMed

3
Prenumerera