Application of 3D-Printed Personalized Guide in Arthroscopic Ankle Arthrodesis

Xiaojun Duan, Peng He, Huaquan Fan, Chengchang Zhang, Fuyou Wang, Liu Yang, Xiaojun Duan, Peng He, Huaquan Fan, Chengchang Zhang, Fuyou Wang, Liu Yang

Abstract

Objective: To accurately drill the Kirschner wire with the help of the 3D-printed personalized guide and to evaluate the feasibility of the 3D technology as well as the outcome of the surgery.

Methods: Patients' DICM data of ankle via CT examinations were introduced into the MIMICS software to design the personalized guides. Two 2mm Kirschner wires were drilled with the help of the guides; the C-arm fluoroscopy was used to confirm the position of the wires before applying the cannulated screws. The patients who underwent ankle arthrodesis were divided into two groups. The experimental group adopted the 3D-printed personalized guides, while the control group received traditional method, i.e., drilling the Kirschner wires according to the surgeon's previous experience. The times of completing drilling the Kirschner wires to correct position were compared between the two groups. Regular follow-ups were conducted to statistically analyze the differences in the ankle fusion time and AOFAS scores between the two groups.

Results: 3D-printed personalized guides were successfully prepared. A total of 29 patients were enrolled, 15 in the experimental group and 14 in the control group. It took 2.2 ± 0.8 minutes to drill the Kirschner wires to correct position in the experimental group and 4.5 ± 1.6 minutes in the control group (p=0.001). No obvious complications occurred in the two groups during and after surgery. Postoperative radiographs confirmed bony fusion in all cases. There were no significant differences in the fusion time (p=0.82) and AOFAS scores at 1 year postoperatively between the two groups (p=0.55).

Conclusions: The application of 3D-printed personalized guide in assisting the accurate drilling of Kirschner wire in ankle arthrodesis can shorten the operation time and reduce the intraoperative radiation. This technique does not affect the surgical outcome.

Trial registration number: This study is registered on www.clinicaltrials.gov with NCT03626935.

Figures

Figure 1
Figure 1
Design and preparation of the 3D-printed personalized guide. (a, b) Computer software-assisted design of personalized ankle arthrodesis guide (the red lines in (a) demonstrate the positioning of the Kirschner wires that drill through, and the yellow parts in (b) are the guides). (c) Guide data converted into STL format and imported into the 3D printer for preparation. (d) The 3D-printed personalized guides.
Figure 2
Figure 2
Preoperative imageological examination suggesting end-stage traumatic arthritis in the right ankle. (a) Preoperative radiograph of the ankle joint (anteroposterior view). (b) Preoperative radiograph of the ankle joint (lateral view). (c) Preoperative MRI of the ankle joint (lateral view). (d) Preoperative MRI of the ankle joint (anteroposterior view).
Figure 3
Figure 3
Arthroscopy. (a) Position and noninvasive traction. (b) Debridement of residual cartilage using curette. (c) Microfractures treatment for the fusion surface. (d) Articular surface after treatment.
Figure 4
Figure 4
Ankle arthrodesis assisted by 3D printed personalized guide. (a, b) Intraoperative operation, drilling of two Kirschner wires with the help of the guides. (c, d) C-arm fluoroscopy confirmed satisfactory ankle reduction and Kirschner wire position. (e, f) C-arm fluoroscopy showed satisfactory position of the screws.

References

    1. Coester L. M., Saltzman C. L., Leupold J., Pontarelli W. Long-term results following ankle arthrodesis for post-traumatic arthritis. The Journal of Bone & Joint Surgery. 2001;83(2):219–228. doi: 10.2106/00004623-200102000-00009.
    1. Boc S. F., Norem N. D. Ankle Arthrodesis. Clinics in Podiatric Medicine and Surgery. 2012;29(1):103–113. doi: 10.1016/j.cpm.2011.10.005.
    1. Duan X., Yang L., Yin L. Arthroscopic arthrodesis for ankle arthritis without bone graft. Journal of Orthopaedic Surgery and Research. 2016;11(1, article no. 154) doi: 10.1186/s13018-016-0490-y.
    1. O'Brien T. S., Hart T. S., Shereff M. J., Stone J., Johnson J. Open versus arthroscopic ankle arthrodesis: a comparative study. Foot & Ankle International. 1999;20(6):368–374. doi: 10.1177/107110079902000605.
    1. Cameron S. E., Ullrich P. Arthroscopic arthrodesis of the ankle joint. Arthroscopy: The Journal of Arthroscopic and Related Surgery. 2000;16(1):21–26. doi: 10.1016/S0749-8063(00)90123-3.
    1. Glick J. M., Morgan C. D., Myerson M. S., Sampson T. G., Mann J. A. Ankle arthrodesis using an arthroscopic method: Long-term follow-up of 34 cases. Arthroscopy: The Journal of Arthroscopic and Related Surgery. 1996;12(4):428–434. doi: 10.1016/S0749-8063(96)90036-5.
    1. Ogilvie-Harris D. J., Lieberman I., Fitsialos D. Arthroscopically assisted arthrodesis for osteoarthrotic ankles. The Journal of Bone & Joint Surgery. 1993;75(8):1167–1174. doi: 10.2106/00004623-199308000-00006.
    1. Lee M. S. Arthroscopic ankle arthrodesis. Clinics in Podiatric Medicine and Surgery. 2011;28(3):511–521. doi: 10.1016/j.cpm.2011.04.008.
    1. Zheng P., Yao Q., Xu P., Wang L. Application of computer-aided design and 3D-printed navigation template in Locking Compression Pediatric Hip Plate TM placement for pediatric hip disease. International Journal for Computer Assisted Radiology and Surgery. 2017;12(5):865–871. doi: 10.1007/s11548-017-1535-3.
    1. Witowski J. S., Pędziwiatr M., Major P., Budzyński A. Cost-effective, personalized, 3D-printed liver model for preoperative planning before laparoscopic liver hemihepatectomy for colorectal cancer metastases. International Journal for Computer Assisted Radiology and Surgery. 2017;12(12):2047–2054. doi: 10.1007/s11548-017-1527-3.
    1. Ma L., Zhou Y., Zhu Y., et al. 3D printed personalized titanium plates improve clinical outcome in microwave ablation of bone tumors around the knee. Scientific Reports. 2017;7(1) doi: 10.1038/s41598-017-07243-3.
    1. Liang H., Ji T., Zhang Y., Wang Y., Guo W. Reconstruction with 3D-printed pelvic endoprostheses after resection of a pelvic tumour. The Bone & Joint Journal. 2017;99-B(2):267–275. doi: 10.1302/0301620X.99B2.BJJ20160654.R1.
    1. Ren X., Yang L., Duan X.-J. Three-dimensional printing in the surgical treatment of osteoid osteoma of the calcaneus: A case report. Journal of International Medical Research. 2017;45(1):372–380. doi: 10.1177/0300060516686514.
    1. Habibovic P., Gbureck U., Doillon C. J., Bassett D. C., van Blitterswijk C. A., Barralet J. E. Osteoconduction and osteoinduction of low-temperature 3D printed bioceramic implants. Biomaterials. 2008;29(7):944–953. doi: 10.1016/j.biomaterials.2007.10.023.
    1. Winson I. G., Robinson D. E., Allen P. E. Arthroscopic ankle arthrodesis. The Journal of Bone & Joint Surgery (British Volume) 2005;87(3):343–347. doi: 10.1302/0301-620X.87B3.15756.
    1. Vega J., Dalmau-Pastor M., Malagelada F., Fargues-Polo B., Peña F. Ankle Arthroscopy: An Update. Journal of Bone and Joint Surgery - American Volume. 2017;99(16):1395–1407. doi: 10.2106/JBJS.16.00046.
    1. Duan X.-J., Yang L. Removal of osteoblastoma of the talar neck using standard anterior ankle Arthroscopy: A case report. International Journal of Surgery Case Reports. 2016;23:52–55. doi: 10.1016/j.ijscr.2016.03.013.
    1. Martin D. F., Baker C. L., Curl W. W., Andrews J. R., Robie D. B., Haas A. F. Operative ankle arthroscopy: Long-term followup. The American Journal of Sports Medicine. 1989;17(1):16–23. doi: 10.1177/036354658901700103.
    1. Ferkel R. D., Hewitt M. Long-term results of arthroscopic ankle arthrodesis. Foot & Ankle International. 2005;26(4):275–280. doi: 10.1177/107110070502600402.
    1. Glazebrook M. A., Ganapathy V., Bridge M. A., Stone J. W., Allard J.-P. Evidence-Based Indications for Ankle Arthroscopy. Arthroscopy - Journal of Arthroscopic and Related Surgery. 2009;25(12):1478–1490. doi: 10.1016/j.arthro.2009.05.001.
    1. Raikin S. M. Arthrodesis of the ankle: Arthroscopic, mini-open, and open techniques. Foot and Ankle Clinics. 2003;8(2):347–359. doi: 10.1016/S1083-7515(03)00014-7.
    1. Gougoulias N. E., Agathangelidis F. G., Parsons S. W. Arthroscopic ankle arthrodesis. Foot & Ankle International. 2007;28(6):695–706. doi: 10.3113/FAI.2007.0695.
    1. Dannawi Z., Nawabi D. H., Patel A., Leong J. J. H., Moore D. J. Arthroscopic ankle arthrodesis: Are results reproducible irrespective of pre-operative deformity? Journal of Foot and Ankle Surgery. 2011;17(4):294–299. doi: 10.1016/j.fas.2010.12.004.
    1. Peterson K. S., Lee M. S., Buddecke D. E. Arthroscopic versus open ankle arthrodesis: a retrospective cost analysis. The Journal of foot and ankle surgery : official publication of the American College of Foot and Ankle Surgeons. 2010;49(3):242–247.
    1. Nielsen K. K., Linde F., Jensen N. C. The outcome of arthroscopic and open surgery ankle arthrodesis. A comparative retrospective study on 107 patients. Journal of Foot and Ankle Surgery. 2008;14(3):153–157. doi: 10.1016/j.fas.2008.01.003.
    1. Smith R., Wood P. L. R. Arthrodesis of the ankle in the presence of large deformity in the coronal plane. The Journal of Bone & Joint Surgery (British Volume) 2007;89(5):615–619. doi: 10.1302/0301-620X.89B5.18109.
    1. Stone J. W. Arthroscopic Ankle Arthrodesis. Foot and Ankle Clinics. 2006;11(2):361–368. doi: 10.1016/j.fcl.2006.03.007.
    1. Kats J., Van Kampen A., De Waal-Malefijt M. C. Improvement in technique for arthroscopic ankle fusion: Results in 15 patients. Knee Surgery, Sports Traumatology, Arthroscopy. 2003;11(1):46–49. doi: 10.1007/s00167-002-0315-x.
    1. Nihal A., Gellman R. E., Embil J. M., Trepman E. Ankle arthrodesis. Journal of Foot and Ankle Surgery. 2008;14(1):1–10. doi: 10.1016/j.fas.2007.08.004.
    1. Collman D. R., Kaas M. H., Schuberth J. M. Arthroscopic ankle arthrodesis: Factors influencing union in 39 consecutive patients. Foot & Ankle International. 2006;27(12):1079–1085. doi: 10.1177/107110070602701214.
    1. Fuchs S., Sandmann C., Skwara A., Chylarecki C. Quality of life 20 years arthrodesis of the ankle. The Journal of Bone & Joint Surgery (British Volume) 2003;85(7):994–998. doi: 10.1302/0301-620X.85B7.13984.
    1. Caiti G., Dobbe J. G. G., Strijkers G. J., Strackee S. D., Streekstra G. J. Positioning error of custom 3D-printed surgical guides for the radius: influence of fitting location and guide design. International Journal for Computer Assisted Radiology and Surgery. 2018;13(4):507–518. doi: 10.1007/s11548-017-1682-6.

Source: PubMed

3
Prenumerera