Melatonin as a Therapy for Traumatic Brain Injury: A Review of Published Evidence

Nicole Osier, Emily McGreevy, Lan Pham, Ava Puccio, Dianxu Ren, Yvette P Conley, Sheila Alexander, C Edward Dixon, Nicole Osier, Emily McGreevy, Lan Pham, Ava Puccio, Dianxu Ren, Yvette P Conley, Sheila Alexander, C Edward Dixon

Abstract

Melatonin (MEL) is a hormone that is produced in the brain and is known to bind to MEL-specific receptors on neuronal membranes in several brain regions. MEL's documented neuroprotective properties, low toxicity, and ability to cross the blood-brain-barrier have led to its evaluation for patients with traumatic brain injury (TBI), a condition for which there are currently no Food and Drug Administration (FDA)-approved therapies. The purpose of this manuscript is to summarize the evidence surrounding the use of melatonin after TBI, as well as identify existing gaps and future directions. To address this aim, a search of the literature was conducted using Pubmed, Google Scholar, and the Cochrane Database. In total, 239 unique articles were screened, and the 22 preclinical studies that met the a priori inclusion/exclusion criteria were summarized, including the study aims, sample (size, groups, species, strain, sex, age/weight), TBI model, therapeutic details (preparation, dose, route, duration), key findings, and conclusions. The evidence from these 22 studies was analyzed to draw comparisons across studies, identify remaining gaps, and suggest future directions. Taken together, the published evidence suggests that MEL has neuroprotective properties via a number of mechanisms with few toxic effects reported. Notably, available evidence is largely based on data from adult male rats and, to a lesser extent, mice. Few studies collected data beyond a few days of the initial injury, necessitating additional longer-term studies. Other future directions include diversification of samples to include female animals, pediatric and geriatric animals, and transgenic strains.

Keywords: melatonin; neurotrauma; preclinical; review; therapy; traumatic brain injury (TBI).

Conflict of interest statement

The authors declare no conflicts of interest.

References

    1. Centers for Disease Control and Prevention CDC—Statistics—Traumatic Brain Injury—Injury Center. [(accessed on 8 May 2018)];2013 Available online: .
    1. Colantonio A., Saverino C., Zagorski B., Swaine B., Lewko J., Jaglal S., Vernich L. Hospitalizations and emergency department visits for TBI in Ontario. Can. J. Neurol. Sci. 2010;37:783–790. doi: 10.1017/S0317167100051441.
    1. Faul M., Xu L., Wald M.M., Coronado V.G. Traumatic Brain Injury in the United States: Emergency Department Visits, Hospitalizations, and Deaths. Centers for Disease Control and Prevention, National Center for Injury Prevention and Control. [(accessed on 8 May 2018)];2010 Available online: .
    1. Feigin V.L., Theadom A., Barker-Collo S., Starkey N.J., McPherson K., Kahan M., Dowell A., Brown P., Parag V., Kydd R. Incidence of traumatic brain injury in New Zealand: A population-based study. Lancet Neurol. 2013;12:53–64. doi: 10.1016/S1474-4422(12)70262-4.
    1. Puvanachandra P., Hyder A. Traumatic brain injury in Latin America and the Caribbean: A call for research. Salud Pública de México. 2008;50:13–15. doi: 10.1590/S0036-36342008000700002.
    1. Reilly P. The impact of neurotrauma on society: An international perspective. Prog. Brain Res. 2007;161:3–9. doi: 10.1016/S0079-6123(06)61001-7.
    1. Roozenbeek B., Maas A.I.R., Menon D.K. Changing patterns in the epidemiology of traumatic brain injury. Nat. Rev. Neurol. 2013;9:231–236. doi: 10.1038/nrneurol.2013.22.
    1. Scudellari M. Brain, Interrupted. Scientist. 2010;24:36–41.
    1. Coronado V.G., McGuire L.C., Faul M. Sugarman, Pearson. The Epidemiology and Prevention of TBI; Atlanta, GA, USA: 2012.
    1. Wang X. The antiapoptotic activity of melatonin in neurodegenerative diseases. CNS Neurosci. Ther. 2009;15:345–357. doi: 10.1111/j.1755-5949.2009.00105.x.
    1. Jahnke G., Marr M., Myers C., Wilson R., Travlos G., Price C. Maternal and developmental toxicity evaluation of melatonin administered orally to pregnant Sprague-Dawley rats. Toxicol. Sci. 1999;50:271–279. doi: 10.1093/toxsci/50.2.271.
    1. Seabra M.L., Bignotto M., Pinto L.R., Tufik S. Randomized, double-blind clinical trial, controlled with placebo, of the toxicology of chronic melatonin treatment. J. Pineal Res. 2000;29:193–200. doi: 10.1034/j.1600-0633.2002.290401.x.
    1. Weaver D., Rivkees S., Reppert S. Localization and characterization of melatonin receptors in rodent brain by in vitro autoradiography. J. Neurosci. 1989;9:2581–2590. doi: 10.1523/JNEUROSCI.09-07-02581.1989.
    1. Di Bella L., Gualano L. Key aspects of melatonin physiology: Thirty years of research. Neuro Endocrinol. Lett. 2006;27:425–432.
    1. Le Bars D., Thivolle P., Vitte P.A., Bojkowski C., Chazot G., Arendt J., Frackowiak R.S.J., Claustrat B. PET and plasma pharmacokinetic studies after bolus intravenous administration of 11C-melatonin in humans. Int. J. Radiat. Appl. Instrum. Part B Nucl. Med. Biol. 1991;18:357–362. doi: 10.1016/0883-2897(91)90132-5.
    1. Shekleton J.A., Parcell D.L., Redman J.R., Phipps-Nelson J., Ponsford J.L., Rajaratnam S.M.W. Sleep disturbance and melatonin levels following traumatic brain injury. Neurology. 2010;74:1732–1738. doi: 10.1212/WNL.0b013e3181e0438b.
    1. Naseem M., Parvez S. Role of melatonin in traumatic brain injury and spinal cord injury. Sci. World J. 2014;2014:586270. doi: 10.1155/2014/586270.
    1. Srinivasan V. Melatonin oxidative stress and neurodegenerative diseases. Indian J. Exp. Biol. 2002;40:668–679.
    1. Wiechmann A.F., Chignell C.F., Roberts J.E. Influence of dietary melatonin on photoreceptor survival in the rat retina: An ocular toxicity study. Exp. Eye Res. 2008;86:241–250. doi: 10.1016/j.exer.2007.10.015.
    1. Ozdemir D., Uysal N., Gonenc S., Acikgoz O., Sonmez A., Topcu A., Ozdemir N., Duman M., Semin I., Ozkan H. Effect of melatonin on brain oxidative damage induced by traumatic brain injury in immature rats. Physiol. Res. 2005;54:631–637.
    1. Wang X., Sirianni A., Pei Z., Cormier K., Smith K., Jiang J., Zhou S., Wang H., Zhao R., Yano H., et al. The melatonin MT1 receptor axis modulates mutant Huntingtin-mediated toxicity. J. Neurosci. . 2011;31:14496–14507. doi: 10.1523/JNEUROSCI.3059-11.2011.
    1. Asayama K., Yamadera H., Ito T., Suzuki H., Kudo Y., Endo S. Double blind study of melatonin effects on the sleep-wake rhythm, cognitive and non-cognitive functions in Alzheimer type dementia. J. Nippon Med. Sch. 2003;70:334–341. doi: 10.1272/jnms.70.334.
    1. Weishaupt J.H., Bartels C., Pölking E., Dietrich J., Rohde G., Poeggeler B., Mertens N., Sperling S., Bohn M., Hüther G., et al. Reduced oxidative damage in ALS by high-dose enteral melatonin treatment. J. Pineal Res. 2006;41:313–323. doi: 10.1111/j.1600-079X.2006.00377.x.
    1. Ozdemir D., Tugyan K., Uysal N., Sonmez U., Sonmez A., Acikgoz O., Ozdemir N., Duman M., Ozkan H. Protective effect of melatonin against head trauma-induced hippocampal damage and spatial memory deficits in immature rats. Neurosci. Lett. 2005;385:234–239. doi: 10.1016/j.neulet.2005.05.055.
    1. Zhang Y., Cook A., Kim J., Baranov S.V., Jiang J., Smith K., Cormier K., Bennett E., Browser R.P., Day A.L., et al. Melatonin inhibits the caspase-1/cytochrome c/caspase-3 cell death pathway, inhibits MT1 receptor loss and delays disease progression in a mouse model of amyotrophic lateral sclerosis. Neurobiol. Dis. 2013;55:26–35. doi: 10.1016/j.nbd.2013.03.008.
    1. Wang J., Xiao X., Zhang Y., Shi D., Chen W., Fu L., Xie F., Kang T., Huang W., Deng W. Simultaneous modulation of COX-2, p300, Akt, and Apaf-1 signaling by melatonin to inhibit proliferation and induce apoptosis in breast cancer cells. J. Pineal Res. 2012;53:77–90. doi: 10.1111/j.1600-079X.2012.00973.x.
    1. Olcese J.M., Cao C., Mori T., Mamcarz M.B., Maxwell A., Runfeldt M.J., Wang L., Zhang C., Lin X., Zhang G., et al. Protection against cognitive deficits and markers of neurodegeneration by long-term oral administration of melatonin in a transgenic model of Alzheimer disease. J. Pineal Res. 2009;47:82–96. doi: 10.1111/j.1600-079X.2009.00692.x.
    1. Samantaray S., Sribnick E.A., Das A., Knaryan V.H., Matzelle D.D., Yallapragada A.V., Reiter R.J., Ray S.K., Banik N.L. Melatonin attenuates calpain upregulation, axonal damage and neuronal death in spinal cord injury in rats. J. Pineal Res. 2008;44:348–357. doi: 10.1111/j.1600-079X.2007.00534.x.
    1. Senol N., Nazıroğlu M. Melatonin reduces traumatic brain injury-induced oxidative stress in the cerebral cortex and blood of rats. Neural Regener. Res. 2014;9:1112–1116. doi: 10.4103/1673-5374.135312.
    1. Ucar T., Ozkaya G., Demir N., Gurer I., Akyuz M., Onal M.Z. The effects of environmental light–dark changes on experimental mild traumatic brain injury. Acta Neurol. Scand. 2005;112:163–172. doi: 10.1111/j.1600-0404.2005.00463.x.
    1. Yürüker V., Naz M., Nilgün Ş. Reduction in traumatic brain injury-induced oxidative stress, apoptosis, and calcium entry in rat hippocampus by melatonin: Possible involvement of TRPM2 channels. Metab. Brain Dis. 2015;30:223–231. doi: 10.1007/s11011-014-9623-3.
    1. Ates O., Cayli S., Gurses I., Yucel N., Iraz M., Altinoz E., Kocak A., Yologlu S. Effect of pinealectomy and melatonin replacement on morphological and biochemical recovery after traumatic brain injury. Int. J. Dev. Neurosci. 2006;24:357–363. doi: 10.1016/j.ijdevneu.2006.08.003.
    1. Cirak B., Rousan N., Kocak A., Palaoglu O., Palaoglu S., Kilic K. Melatonin as a free radical scavenger in experimental head trauma. Pediatr. Neurosurg. 1999;31:298–301. doi: 10.1159/000028879.
    1. Kelestemur T., Yulug B., Caglayan A.B., Beker M.C., Kilic U., Caglayan B., Yalcin E., Gundogdu R.Z., Kilic E. Targeting different pathophysiological events after traumatic brain injury in mice: Role of melatonin and memantine. Neurosci. Lett. 2016;612:92–97. doi: 10.1016/j.neulet.2015.11.043.
    1. Jadhav V., Lee S., Ayer R.E., Rojas H., Hyong A., Lekic T., Tang J., Zhang J.H. Dual effects of melatonin on oxidative stress after surgical brain injury in rats. J. Pineal Res. 2009;46:43–48. doi: 10.1111/j.1600-079X.2008.00607.x.
    1. Kelso M.L., Scheff N.N., Scheff S.W., Pauly J.R. Melatonin and minocycline for combinatorial therapy to improve functional and histopathological deficits following traumatic brain injury. Neurosci. Lett. 2011;488:60–64. doi: 10.1016/j.neulet.2010.11.003.
    1. Liu J.-B., Tang T.-S., Yang H.-L., Xiao D.-S. Antioxidation of melatonin against spinal cord injury in rats. Chin. Med. J. 2004;117:571–575.
    1. Ding K., Xu J., Wang H., Zhang L., Wu Y., Li T. Melatonin protects the brain from apoptosis by enhancement of autophagy after traumatic brain injury in mice. Neurochem. Int. 2015;91:46–54. doi: 10.1016/j.neuint.2015.10.008.
    1. Lin C., Chao H., Li Z., Xu X., Liu Y., Hou L., Liu N., Ji J. Melatonin Attenuates Traumatic Brain Injury-induced Inflammation: A Possible Role for Mitophagy. J. Pineal Res. 2016;61:177–186. doi: 10.1111/jpi.12337.
    1. Babaee A., Eftekhar-Vaghefi S.H., Asadi-Shekaari M., Shahrokhi N., Soltani S.D., Malekpour-Afshar R., Basiri M. Melatonin treatment reduces astrogliosis and apoptosis in rats with traumatic brain injury. Iran. J. Basic Med. Sci. 2015;18:867–872.
    1. Dehghan F., Khaksari Hadad M., Asadikram G., Najafipour H., Shahrokhi N. Effect of melatonin on intracranial pressure and brain edema following traumatic brain injury: Role of oxidative stresses. Arch. Med. Res. 2013;44:251–258. doi: 10.1016/j.arcmed.2013.04.002.
    1. Beni S.M., Kohen R., Reiter R.J., Tan D.-X., Shohami E. Melatonin-induced neuroprotection after closed head injury is associated with increased brain antioxidants and attenuated late-phase activation of NF-κB and AP-1. FASEB J. 2004;18:149–151. doi: 10.1096/fj.03-0323fje.
    1. Shochat A., Abookasis D. Differential effects of early postinjury treatment with neuroprotective drugs in a mouse model using diffuse reflectance spectroscopy. Neurophotonics. 2015;2:015001. doi: 10.1117/1.NPh.2.1.015001.
    1. Mesenge C., Margaill I., Verrecchia C., Allix M., Boulu R.G., Plotkine M. Protective effect of melatonin in a model of traumatic brain injury in mice. J. Pineal Res. 1998;25:41–46. doi: 10.1111/j.1600-079X.1998.tb00384.x.
    1. Campolo M., Ahmad A., Crupi R., Impellizzeri D., Morabito R., Esposito E., Cuzzocrea S. Combination therapy with melatonin and dexamethasone in a mouse model of traumatic brain injury. J. Endocrinol. 2013;217:291–301. doi: 10.1530/JOE-13-0022.
    1. Kabadi S.V., Maher T.J. Posttreatment with uridine and melatonin following traumatic brain injury reduces edema in various brain regions in rats. Ann. N. Y. Acad. Sci. 2010;1199:105–113. doi: 10.1111/j.1749-6632.2009.05352.x.
    1. Wu H., Shao A., Zhao M., Chen S., Yu J., Zhou J., Liang F., Shi L., Dixon B.J., Wang Z., et al. Melatonin attenuates neuronal apoptosis through up-regulation of K+–Cl− Cotransporter KCC2 expression following traumatic brain injury in rats. J. Pineal Res. 2016 doi: 10.1111/jpi.12344.
    1. Sarrafzadeh A.S., Thomale U.W., Kroppenstedt S.N., Unterberg A.W. Neuroprotective effect of melatonin on cortical impact injury in the rat. Acta Neurochir. 2000;142:1293–1299. doi: 10.1007/s007010070028.
    1. Zhao L., Liu H., Yue L., Zhang J., Li X., Wang B., Lin Y., Qu Y. Melatonin Attenuates Early Brain Injury via the Melatonin Receptor/Sirt1/NF-κB Signaling Pathway Following Subarachnoid Hemorrhage in Mice. Mol. Neurobiol. 2016;54:1612–1621. doi: 10.1007/s12035-016-9776-7.
    1. Alluri H., Wilson R.L., Anasooya Shaji C., Wiggins-Dohlvik K., Patel S., Liu Y., Peng X., Beeram M.R., Davis M.L., Huang J.H., et al. Melatonin Preserves Blood-Brain Barrier Integrity and Permeability via Matrix Metalloproteinase-9 Inhibition. PLoS ONE. 2016;11:e0154427. doi: 10.1371/journal.pone.0154427.
    1. Huether G. The contribution of extrapineal sites of melatonin synthesis to circulating melatonin levels in higher vertebrates. Experientia. 1993;49:665–670. doi: 10.1007/BF01923948.
    1. Kemp S., Biswas R., Neumann V., Coughlan A. The value of melatonin for sleep disorders occurring post-head injury: A pilot RCT. Brain Inj. 2004;18:911–919. doi: 10.1080/02699050410001671892.
    1. Seifman M.A., Adamides A.A., Nguyen P.N., Vallance S.A., Cooper D.J., Kossmann T., Rosenfeld J.V., Morganti-Kossmann M.C. Endogenous melatonin increases in cerebrospinal fluid of patients after severe traumatic brain injury and correlates with oxidative stress and metabolic disarray. J. Cereb. Blood Flow Metab. 2008;28:684–696. doi: 10.1038/sj.jcbfm.9600603.
    1. Paparrigopoulos T., Melissaki A., Tsekou H., Efthymiou A., Kribeni G., Baziotis N., Geronikola X. Melatonin secretion after head injury: A pilot study. Brain Inj. 2006;20:873–878. doi: 10.1080/02699050600832114.
    1. Barlow K.M., Brooks B.L., MacMaster F.P., Kirton A., Seeger T., Esser M., Crawford S., Nettel-Aguirre A., Zemek R., Angelo M., et al. A double-blind, placebo-controlled intervention trial of 3 and 10 mg sublingual melatonin for post-concussion syndrome in youths (PLAYGAME): Study protocol for a randomized controlled trial. Trials. 2014;15:271. doi: 10.1186/1745-6215-15-271.
    1. Onur R., Semerciöz A., Orhan I., Yekeler H. The effects of melatonin and the antioxidant defence system on apoptosis regulator proteins (Bax and Bcl-2) in experimentally induced varicocele. Urol. Res. 2004;32:204–208. doi: 10.1007/s00240-004-0403-0.
    1. Alonso-Alconada D., Alvarez A., Lacalle J., Hilario E. Histological study of the protective effect of melatonin on neural cells after neonatal hypoxia-ischemia. Histol. Histopathol. 2012;27:771–783.
    1. Centers for Disease Control and Prevention . Traumatic Brain Injury in the United States: Emergency Department Visits, Hospializationns, and Deaths 2002–2006. Centers for Disease Control and Prevention; Atlanta, GA, USA: 2010.
    1. Smith D.H., Hicks R.R., Johnson V.E., Bergstrom D.A., Cummings D.M., Noble L.J., Hovda D., Whalen M., Ahlers S.T., LaPlaca M., et al. Pre-Clinical Traumatic Brain Injury Common Data Elements: Toward a Common Language Across Laboratories. J. Neurotrauma. 2015;32:1725–1735. doi: 10.1089/neu.2014.3861.

Source: PubMed

3
Prenumerera