Auditory Processing of the Brain Is Enhanced by Parental Singing for Preterm Infants

Eino Partanen, Gustaf Mårtensson, Pernilla Hugoson, Minna Huotilainen, Vineta Fellman, Ulrika Ådén, Eino Partanen, Gustaf Mårtensson, Pernilla Hugoson, Minna Huotilainen, Vineta Fellman, Ulrika Ådén

Abstract

As the human auditory system is highly malleable in infancy, perinatal risk factors, such as preterm birth, may affect auditory development. In comparison to healthy full-term infants, preterm infants show abnormal auditory brain responses at term age, which may have long-term detrimental outcomes. To achieve an optimal neonatal care environment for preterm-born infants, many early interventions have been developed. Musical interventions developed for neonatal intensive care units (NICUs) have shown beneficial effects on vital functions and weight gain of preterm infants and might also influence basic auditory processing and thereby enhance outcomes. In the present study, we tested the effect of parental singing during kangaroo care on auditory processing of standardized audio stimuli. Preterm infants (born between 24 and 32 weeks of gestation) were randomized to singing intervention (n = 13) or control (n = 8) groups. The auditory processing was tested using two audio paradigms assessed with magnetoencephalography (MEG) at term corresponding age. To verify that the paradigms elicit responses in MEG, we studied 12 healthy full-term infants. In the singing intervention group, parents were instructed by a music therapist twice a week for 4 weeks to sing or hum during kangaroo care in an infant-directed way. The control group received standard kangaroo care. The results show that the infants in the singing intervention group show larger neural responses than those in the control group when controlling for the total amount of singing during kangaroo care. Our findings suggest that incorporating singing into kangaroo care may be beneficial for preterm infants, but the effect may not be due to exposure to singing but instead positive parenting, improved parental self-esteem and improved caregiver sensitivity.

Keywords: auditory event related potential; auditory processing; infant-directed singing; mismatch response; preterm birth; sound discrimination.

Conflict of interest statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2022 Partanen, Mårtensson, Hugoson, Huotilainen, Fellman and Ådén.

Figures

FIGURE 1
FIGURE 1
ERP responses to the standard tones (solid lines) and deviant tones (dashed lines) for all groups in the oddball paradigm. Grayed area denotes the predefined MMR time window.
FIGURE 2
FIGURE 2
ERP responses to the standard tata (solid lines) and responses to all deviant types (dashed lines) for all the groups in the tata paradigm. Grayed area denotes the predefined MMR time window.
FIGURE 3
FIGURE 3
Deviant minus standard MMR responses for each deviant category for both speech sounds (tata paradigm) and pure tones (oddball paradigm). Asterisks (*) denote deviant categories in which males in the singing group showed larger responses than females in the singing group (*p < 0.05; **p < 0.01).

References

    1. Anderson P. J., Doyle L. W. (2004). Executive functioning in school-aged children who were born very preterm or with extremely low birth weight in the 1990s. Pediatrics 114 50–57. 10.1542/peds.114.1.50
    1. Arnon S., Diamant C., Bauer S., Regev R., Sirota G., Litmanovitz I. (2014). Maternal singing during kangaroo care led to autonomic stability in preterm infants and reduced maternal anxiety. Acta Paediat. 103 1039–1044. 10.1111/apa.12744
    1. Bates D., Mächler M., Bolker B., Walker S. (2014). Fitting linear mixed-effects models using lme4. arXiv 2014:1406.
    1. Bieleninik L., Ghetti C., Gold C. (2016). Music therapy for preterm infants and their parents: a meta-analysis. Pediatrics 138:e20160971. 10.1542/peds.2016-0971
    1. Boatella-Costa E., Costas-Moragas C., Botet-Mussons F., Fornieles-Deu A., De Cáceres-Zurita M. L. (2007). Behavioral gender differences in the neonatal period according to the Brazelton scale. Early Human Dev. 83 91–97. 10.1016/j.earlhumdev.2006.05.006
    1. Bouchard C., Trudeau N., Sutton A., Boudreault M. C., Deneault J. (2009). Gender differences in language development in French Canadian children between 8 and 30 months of age. Appl. Psych. 30 685–707. 10.1017/s0142716409990075
    1. Conde-Agudelo A., Diaz-Rossello J. L. (2016). Kangaroo mother care to reduce morbidity and mortality in low birthweight infants. Cochrane Database Syst. Rev. 2016:8.
    1. Etchell A., Adhikari A., Weinberg L. S., Choo A. L., Garnett E. O., Chow H. M., et al. (2018). A systematic literature review of sex differences in childhood language and brain development. Neuropsychologia 114 19–31. 10.1016/j.neuropsychologia.2018.04.011
    1. Feldman R., Eidelman A. I. (2003). Skin-to-skin contact (Kangaroo Care) accelerates autonomic and neurobehavioural maturation in preterm infants. Dev. Med. Child Neurol. 45 274–281. 10.1017/s0012162203000525
    1. Fellman V., Kushnerenko E., Mikkola K., Ceponiene R., Leipälä J., Näätänen R. (2004). Atypical auditory event-related potentials in preterm infants during the first year of life: a possible sign of cognitive dysfunction? Pediatric Res. 56 291–297. 10.1203/01.PDR.0000132750.97066.B9
    1. Friederici A. D., Pannekamp A., Partsch C. J., Ulmen U., Oehler K., Schmutzler R., et al. (2008). Sex hormone testosterone affects language organization in the infant brain. Neuroreport 19 283–286. 10.1097/WNR.0b013e3282f5105a
    1. Guarini A., Sansavini A., Fabbri C., Alessandroni R., Faldella G., Karmiloff-Smith A. (2009). Reconsidering the impact of preterm birth on language outcome. Early Human Dev. 85 639–645. 10.1016/j.earlhumdev.2009.08.061
    1. Hanlon H. W., Thatcher R. W., Cline M. J. (1999). Gender differences in the development of EEG coherence in normal children. Dev. Neuropsychol. 16 479–506.
    1. Haslbeck F., Hugoson P. (2017). Sounding together: family-centered music therapy as facilitator for parental singing during skin-to-skin contact in Early Vocal Contact and Preterm Infant Brain Development. Cham: Springer, 217–238.
    1. Huotilainen M. (2010). Building blocks of fetal cognition: emotion and language. Infant Child Dev. 19 94–98. 10.1002/icd.658
    1. Kaushanskaya M., Gross M., Buac M. (2013). Gender differences in child word learning. Learn. Ind. Differ. 27 82–89. 10.1016/j.lindif.2013.07.002
    1. Kostilainen K., Partanen E., Mikkola K., Wikström V., Pakarinen S., Fellman V., et al. (2021). Repeated parental singing during kangaroo care improved neural processing of speech sound changes in preterm infants at term age. Front. Neurosci. 2021:15. 10.3389/fnins.2021.686027
    1. Kostilainen K., Partanen E., Mikkola K., Wikström V., Pakarinen S., Fellman V., et al. (2020). Neural processing of changes in phonetic and emotional speech sounds and tones in preterm infants at term age. Int. J. Psychophysiol. 148 111–118. 10.1016/j.ijpsycho.2019.10.009
    1. Kushnerenko E. V., Van den Bergh B. R., Winkler I. (2013). Separating acoustic deviance from novelty during the first year of life: a review of event-related potential evidence. Front. Psychol. 4:595. 10.3389/fpsyg.2013.00595
    1. Leaper C., Anderson K. J., Sanders P. (1998). Moderators of gender effects on parents’ talk to their children: a meta-analysis. Dev. Psychol. 34:3. 10.1037/0012-1649.34.1.3
    1. Leppänen P. H., Guttorm T. K., Pihko E., Takkinen S., Eklund K. M., Lyytinen H. (2004). Maturational effects on newborn ERPs measured in the mismatch negativity paradigm. Exp. Neurol. 190 91–101. 10.1016/j.expneurol.2004.06.002
    1. Loewy J., Stewart K., Dassler A. M., Telsey A., Homel P. (2013). The effects of music therapy on vital signs, feeding, and sleep in premature infants. Pediatrics 131 902–918. 10.1542/peds.2012-1367
    1. Marchman V. A., Loi E. C., Adams K. A., Ashland M., Fernald A., Feldman H. M. (2018). Speed of language comprehension at 18 months predicts school-relevant outcomes at 54 months in children born preterm. J. Dev. Behav. Pediat. 39:246. 10.1097/DBP.0000000000000541
    1. Mikkola K., Kushnerenko E., Partanen E., Serenius-Sirve S., Leipälä J., Huotilainen M., et al. (2007). Auditory event-related potentials and cognitive function of preterm children at five years of age. Clin. Neurophysiol. 118 1494–1502. 10.1016/j.clinph.2007.04.012
    1. Moon C. M., Fifer W. P. (2000). Evidence of transnatal auditory learning. J. Perinatol. 20 S37–S44. 10.1038/sj.jp.7200448
    1. Mueller J. L., Friederici A. D., Männel C. (2012). Auditory perception at the root of language learning. Proc. Nat. Acad. Sci. 109 15953–15958. 10.1073/pnas.1204319109
    1. Näätänen R., Paavilainen P., Rinne T., Alho K. (2007). The mismatch negativity (MMN) in basic research of central auditory processing: a review. Clin. Neurophysiol. 118 2544–2590. 10.1016/j.clinph.2007.04.026
    1. Näätänen R., Pakarinen S., Rinne T., Takegata R. (2004). The mismatch negativity (MMN): towards the optimal paradigm. Clin. Neurophysiol. 115 140–144. 10.1016/j.clinph.2003.04.001
    1. Ohgi S., Fukuda M., Moriuchi H., Kusumoto T., Akiyama T., Nugent J. K., et al. (2002). Comparison of kangaroo care and standard care: behavioral organization, development, and temperament in healthy, low-birth-weight infants through 1 year. J. Perinatol. 22 374–379. 10.1038/sj.jp.7210749
    1. Paquette N., Vannasing P., Tremblay J., Lefebvre F., Roy M. S., McKerral M., et al. (2015). Early electrophysiological markers of atypical language processing in prematurely born infants. Neuropsychologia 79 21–32. 10.1016/j.neuropsychologia.2015.10.021
    1. Partanen E., Kujala T., Näätänen R., Liitola A., Sambeth A., Huotilainen M. (2013a). Learning-induced neural plasticity of speech processing before birth. Proc. Nat. Acad. Sci. 110 15145–15150. 10.1073/pnas.1302159110
    1. Partanen E., Pakarinen S., Kujala T., Huotilainen M. (2013b). Infants’ brain responses for speech sound changes in fast multifeature MMN paradigm. Clin. Neurophysiol. 124 1578–1585. 10.1016/j.clinph.2013.02.014
    1. Partanen E., Vainio M., Kujala T., Huotilainen M. (2011). Linguistic multifeature MMN paradigm for extensive recording of auditory discrimination profiles. Psychophysiology 48 1372–1380. 10.1111/j.1469-8986.2011.01214.x
    1. Pascal A., Govaert P., Oostra A., Naulaers G., Ortibus E., Van den Broeck C. (2018). Neurodevelopmental outcome in very preterm and very-low-birthweight infants born over the past decade: a meta-analytic review. Dev. Med. Child Neurol. 60 342–355. 10.1111/dmcn.13675
    1. Piazza C., Cantiani C., Akalin-Acar Z., Miyakoshi M., Benasich A. A., Reni G., et al. (2016). ICA-derived cortical responses indexing rapid multi-feature auditory processing in six-month-old infants. Neuroimage 133 75–87. 10.1016/j.neuroimage.2016.02.060
    1. R Core Team (2021). R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing.
    1. Sambeth A., Huotilainen M., Kushnerenko E., Fellman V., Pihko E. (2006). Newborns discriminate novel from harmonic sounds: a study using magnetoencephalography. Clin. Neurophysiol. 117 496–503. 10.1016/j.clinph.2005.11.008
    1. Sambeth A., Pakarinen S., Ruohio K., Fellman V., van Zuijen T. L., Huotilainen M. (2009). Change detection in newborns using a multiple deviant paradigm: a study using magnetoencephalography. Clin. Neurophysiol. 120 530–538. 10.1016/j.clinph.2008.12.033
    1. Santhakumaran S., Statnikov Y., Gray D., Battersby C., Ashby D., Modi N. (2018). Survival of very preterm infants admitted to neonatal care in England 2008–2014: time trends and regional variation. Arch. Dis. Childhood-Fetal Neon. Ed. 103 F208–F215. 10.1136/archdischild-2017-312748
    1. Tadel F., Baillet S., Mosher J. C., Pantazis D., Leahy R. M. (2011). Brainstorm: a user-friendly application for MEG/EEG analysis. Comp. Intellig. Neurosci. 2011:879716. 10.1155/2011/879716
    1. Torppa R., Huotilainen M., Leminen M., Lipsanen J., Tervaniemi M. (2014). Interplay between singing and cortical processing of music: a longitudinal study in children with cochlear implants. Front. Psychol. 5:1389. 10.3389/fpsyg.2014.01389
    1. Virtala P., Partanen E. (2018). Can very early music interventions promote at-risk infants’ development? Ann. NY Acad. Sci. 1423 92–101. 10.1111/nyas.13646
    1. Vogel J. P., Chawanpaiboon S., Moller A. B., Watananirun K., Bonet M., Lumbiganon P. (2018). The global epidemiology of preterm birth. Best Pract. Res. Clin. Obst. Gynaecol. 52 3–12. 10.1016/j.bpobgyn.2018.04.003
    1. Wallentin M. (2009). Putative sex differences in verbal abilities and language cortex: a critical review. Brain Lang. 108 175–183. 10.1016/j.bandl.2008.07.001
    1. Wallentin M. (2020). Gender differences in language are small but matter for disorders. Handbook Clin. Neurol. 175 81–102. 10.1016/B978-0-444-64123-6.00007-2
    1. Winkler I. (2007). Interpreting the mismatch negativity. J. Psychophysiol. 21:147. 10.1027/0269-8803.21.34.147
    1. World Health Organization (2018). Preterm birth. Available online at: (accessed May 12, 2019)
    1. Zambrana I. M., Vollrath M. E., Jacobsson B., Sengpiel V., Ystrom E. (2020). Preterm birth and risk for language delays before school entry: a sibling-control study. Dev. Psychopathol. 2020 1–6. 10.1017/S0954579419001536

Source: PubMed

3
Prenumerera