Six decades of vitiligo genetics: genome-wide studies provide insights into autoimmune pathogenesis

Richard A Spritz, Richard A Spritz

Abstract

Generalized vitiligo (GV) is a complex disease in which patchy depigmentation results from autoimmune loss of melanocytes from affected regions. Genetic analyses of GV span six decades, with the goal of understanding biological mechanisms and elucidating pathways that underlie the disease. The earliest studies attempted to describe the mode of inheritance and genetic epidemiology. Early genetic association studies of biological candidate genes resulted in some successes, principally HLA and PTPN22, but in hindsight many such reports now seem to be false-positives. Later, genome-wide linkage studies of multiplex GV families identified NLRP1 and XBP1, which appear to be valid GV susceptibility genes that control key aspects of immune regulation. Recently, the application of genome-wide association studies to analysis of GV has produced a rich yield of validated GV susceptibility genes that encode components of biological pathways reaching from immune cells to the melanocyte. These genes and pathways provide insights into underlying pathogenetic mechanisms and possible triggers of GV, establish relationships to other autoimmune diseases, and may provide clues to potential new approaches to GV treatment and perhaps even prevention. These results thus validate the hopes and efforts of the early investigators who first attempted to comprehend the genetic basis of vitiligo.

Conflict of interest statement

CONFLICT OF INTEREST

The author states no conflict of interest.

References

    1. Addison T. A collection of the published writing of the late Thomas Addison, MD, physician to Guy’s Hospital. New Sydenham Society; London: 1855. On the constitutional and local effects of disease of the suprarenal capsules; p. 1868. Reprinted in Med Classics 1937; 2:244–93.
    1. Alkhateeb A, Stetler GL, Old W, et al. Mapping of an autoimmunity susceptibility locus (AIS1) to chromosome 1p31.3–p32.2. Hum Mol Genet. 2002;11:661–7.
    1. Alkhateeb A, Fain PR, Thody A, et al. Epidemiology of vitiligo and associated autoimmune diseases in Caucasian probands and their families. Pigment Cell Res. 2003;16:208–14.
    1. Alkhateeb A, Fain P, Spritz RA. Candidate functional promoter variant in the FOXD3 melanoblast developmental regulator gene in autosomal dominant vitiligo. J Investig Dermatol. 2005;125:388–91.
    1. Alkhateeb A, Qarqaz F. Genetic association of NALP1 with generalized vitiligo in Jordanian Arabs. Arch Dermatol Res. 2010;302:631–4.
    1. Bhatia PS, Mohan L, Pandey ON, et al. Genetic nature of vitiligo. J Dermatol Sci. 1992;4:180–4.
    1. Birlea SA, Fain PR, Spritz RA. A Romanian population isolate with high frequency of vitiligo and associated autoimmune diseases. Arch Dermatol. 2008;144:310–6.
    1. Birlea SA, Gowan K, Fain PR, et al. Genome-wide association study of generalized vitiligo in an isolated European founder population identifies SMOC2, in close proximity to IDDM8. J Invest Dermatol. 2010;130:798–803.
    1. Birlea SA, Jin Y, Bennett DC, et al. Comprehensive association analysis of candidate genes for generalized vitiligo supports XBP1, FOXP3, and TSLP. J Invest Dermatol. 2011a;131:371–81.
    1. Birlea SA, Spritz RA, Norris DA. Vitiligo. In: Wolff K, editor. Fitzpatrick’s Dermatology in General Medicine. 8. McGraw-Hill; New York: 2011b. in press.
    1. Bishop TD, Demenais F, Iles MM, et al. Genome-wide association study identifies three loci associated with melanoma risk. Nat Genet. 2009;41:920–5.
    1. Boissy RE, Spritz RA. Frontiers and controversies in the pathobiology of vitiligo: separating the wheat from the chaff. Exp Dermatol. 2009;18:583–5.
    1. Chen JJ, Huang W, Gui JP, et al. A novel linkage to generalized vitiligo on 4q13–q21 identified in a genomewide linkage analysis of Chinese families. Am J Hum Genet. 2005;76:1057–65.
    1. Claude H, Gourgerot H. Insuffisiance pluriglandulaire endocrinienne. J Physiol Pathol Gen. 1908;10:469–80.
    1. Das SK, Majumder PP, Chakraborty R, et al. Studies on vitiligo. I. Epidemiological profile in Calcutta, India. Genet Epidemiol. 1985;2:71–8.
    1. De Iudicibus S, Stocco G, Martelossi S, et al. Genetic predictors of glucocorticoid response in pediatric patients with inflammatory bowel diseases. J Clin Gastroenterol. 2011;45:e1–7.
    1. Dieudé P, Guedj M, Wipff J, et al. NLRP1 influences the systemic sclerosis phenotype: a new clue for the contribution of innate immunity in systemic sclerosis-related fibrosing alveolitis pathogenesis. Ann Rheum Dis. 2010;70:668–74.
    1. Fain PR, Gowan K, LaBerge GS, et al. A genomewide screen for autoimmune vitiligo: Confirmation of AIS1 on chromosome 1p31 and evidence for additional susceptibility loci. Am J Hum Genet. 2003;72:1560–4.
    1. Fain PR, Babu SR, Bennett DC, et al. HLA class II haplotype DRB1*04-DQB1*0301 contributes to risk of familial generalized vitiligo and early disease onset. Pigment Cell Res. 2006;19:51–7.
    1. Freedman ML, Reich D, Penney KL, et al. Assessing the impact of population stratification on genetic association studies. Nat Genet. 2004;36:388–93.
    1. Gudbjartsson DF, Sulem P, Stacey SN, et al. ASIP and TYR pigmentation variants associate with cutaneous melanoma and basal cell carcinoma. Nat Genet. 2008;40:886–91.
    1. Hirschhorn JN, Lohmueller K, Byrne E, et al. A comprehensive review of genetic association studies. Genet Med. 2002;4:45–60.
    1. Howitz J, Brodthagen H, Schwartz M, et al. Prevalence of vitiligo: epidemiological survey of the isle of Bornholm, Denmark. Arch Dermatol. 1977;113:47–52.
    1. Jin Y, Birlea SA, Fain PR, et al. Genetic variations in NALP1 are associated with generalized vitiligo in a Romanian population. J Investig Dermatol. 2007b;127:2558–62.
    1. Jin Y, Mailloux CM, Gowan K, et al. NALP1 and vitiligo-associated multiple autoimmune disease. New Engl J Med. 2007a;365:10–8.
    1. Jin Y, Birlea SA, Fain PR, et al. Variant of TYR and autoimmunity susceptibility loci in generalized vitiligo. N Engl J Med. 2010a;362:1686–97.
    1. Jin Y, Birlea SA, Fain PR, et al. Common variants in FOXP1 are associated with generalized vitiligo. Nat Genet. 2010b;42:576–8.
    1. Jin Y, Birlea SA, Fain PR, et al. Genome-wide analysis identifies a quantitative trait locus in the MHC class II region associated with generalized vitiligo age of onset. J Investig Dermatol. 2011 Feb 17; [Epub ahead of print]
    1. Johansson CM, Zunec R, Garcia MA, et al. Chromosome 17p12–q11 harbors susceptibility loci for systemic lupus erythematosus. Hum Genet. 2004;115:230–8.
    1. Kareemullah L, Taneja V, Begum S, et al. Association of ABO blood groups and vitiligo. J Med Genet. 1977;14:211–3.
    1. Kaser A, Lee AH, Franke A, et al. XBP1 links ER stress to intestinal inflammation and confers genetic risk for human inflammatory bowel disease. Cell. 2008;134:743–56.
    1. Kim SM, Chung HS, Hann S-K. The genetics of vitiligo in Korean patients. Internat J Dermatol. 1998;38:908–10.
    1. Laberge G, Mailloux CM, Gowan K, et al. Early disease onset and increased risk of other autoimmune diseases in familial generalized vitiligo. Pigment Cell Res. 2005;18:300–5.
    1. Lamkanfi M, Dixit VM. Inflammasomes: guardians of cytosolic sanctity. Immunol Rev. 2009;227:95–105.
    1. Liang Y, Yang S, Zhou Y, et al. Evidence for two susceptibility loci on chromosomes 22q12 and 6p21–p22 in Chinese generalized vitiligo families. J Invest Dermatol. 2007;127:2552–7.
    1. Liu JB, Li M, Chen H, et al. Association of vitiligo with HLA-A2: a meta-analysis. J Eur Acad Dermatol Venereol. 2007;21:205–13.
    1. Magitta NF, Bøe Wolff AS, Johansson S, et al. A coding polymorphism in NALP1 confers risk for autoimmune Addison’s disease and type 1 diabetes. Genes Immun. 2009;10:120–4.
    1. Majumder PP, Nordland JJ, Nath SP. Pattern of familial aggregation of vitiligo. Arch Dermatol. 1993;129:994–8.
    1. Mehta NR, Shah KC, Theodore C, et al. Epidemiological study of vitiligo in Surat area, south Gujarat. Indian J Med Res. 1973;61:145–54.
    1. Mitchell MS, Harel W, Groshen S. Association of HLA phenotype with response to active specific immunotherapy of melanoma. J Clin Oncol. 1992;10:1158–64.
    1. Nath SK, Kelly JA, Namjou B, et al. Evidence for a susceptibility gene, SLEV1, on chromosome 17p13 in families with vitiligo-related systemic lupus erythematosus. Am J Hum Genet. 2001;69:1401–6.
    1. Neufeld M, Blizzard RM. Polyglandular autoimmune diseases. In: Pinchera A, Doniach D, Fenzi GF, et al., editors. Symposium on Autoimmune Aspects of Endocrine Disorders. Academic Press; New York: 1980. pp. 357–65.
    1. Nordlund JJ, Ortonne J-P, Le Poole IC. Vitiligo vulgaris. In: Nordlund JJ, Boissy RE, Hearing VJ, et al., editors. The Pigmentary System. 2. Blackwell; Oxford: 2006. pp. 551–98.
    1. Obe WK. Vitiligo in Zimbabwe. Cent Afr J Med. 1984;30:259–64.
    1. Picardo M, Taieb A, editors. Vitiligo. Springer; Heidelberg: 2010.
    1. Pontillo A, Vendramin A, Catamo E, et al. The missense variation Q705K in CIAS1/NALP3/NLRP3 gene and an NLRP1 haplotype are associated with celiac disease. Am J Gastroenterol. 2011;106:539–44.
    1. Quan C, Ren YQ, Xiang LH, et al. Genome-wide association study for vitiligo identifies susceptibility loci at 6q27 and the MHC. Nat Genet. 2010;42:614–8.
    1. Ren Y, Yang S, Xu S, et al. Genetic variation of promoter sequence modulates XBP1 expression and genetic risk for vitiligo. PLoS Genet. 2009;5(6):e1000523. [Epub 2009 Jun 19]
    1. Retornaz G, Betuel H, Ortonne JP, et al. HL-A antigens and vitiligo. Br J Dermatol. 1976;95:173–5.
    1. Schmidt M. Eine biglanduiare Erkrankung (Nebennieren und Schilddruse) bei Morbus Addisonii. Verh Dtsch Ges Pathol. 1926;21:212–21.
    1. Skipper JCA, Hendrickson RC, Gulden PH, et al. An HLA-A2-restricted tyrosinase antigen on melanoma cells results from posttranslational modification and suggests a novel pathway for processing of membrane proteins. J Exp Med. 1996;183:527–34.
    1. Spritz RA, Gowan K, Bennett DC, et al. Novel vitiligo susceptibility loci on chromosomes 7 (AIS2) and 8 (AIS3), confirmation of SLEV1 on chromosome 17, and their roles in an autoimmune diathesis. Am J Hum Genet. 2004;74:188–91.
    1. Spritz RA. The genetics of generalized vitiligo. Curr Dir Autoimmun. 2008;10:244–57.
    1. Spritz RA. The genetics of generalized vitiligo: autoimmune pathways and an inverse relationship with malignant melanoma. Genome Med. 2010;2:78.
    1. Spritz RA. Recent progress in the genetics of generalized vitiligo. J Genet Genomics. 2011;38:271–8.
    1. Stüttgen G. Die Vitilgio in erbbiologischer Betrachtung. Z Haut Geschlenkskr. 1950;9:451–6.
    1. Sun X, Xu A, Wei X, Ouyang, et al. Genetic epidemiology of vitiligo: a study of 815 probands and their families from south China. Int J Dermatol. 2006;45:1176–81.
    1. Taïeb A, Picardo M. Vitiligo. N Engl J Med. 2009;360:160–9.
    1. Teindel H. Familiäre. Z Haut Geschlenkskr. 1950;9:456–62.
    1. Toyofuku K, Wada I, Spritz RA, et al. The molecular basis of oculocutaneous albinism type 1 (OCA1): sorting failure and degradation of mutant tyrosinases results in a lack of pigmentation. Biochem J. 2001;355:259–69.
    1. Tripathi RK, Giebel LB, Strunk KM, et al. A polymorphism of the human tyrosinase gene that is associated with temperature-sensitive enzymatic activity. Gene Expr. 1991;1:103–10.
    1. Tripathi RK, Flanders DJ, Young TL, et al. Microphthalmia-associated transcription factor (MITF) locus lacks linkage to human vitiligo or osteopetrosis: an evaluation. Pigment Cell Res. 1999;12:187–92.
    1. Wasfi AI, Saha N, El Munshid HA, et al. Genetic association in vitiligo: ABO, MNSs, Rhesus, Kell and Duffy blood groups. Clin Genet. 1980;17:415–7.
    1. Zurawek M, Fichna M, Januszkiewicz-Lewandowska D, et al. A coding variant in NLRP1 is associated with autoimmune Addison’s disease. Hum Immunol. 2010;71:530–4.

Source: PubMed

3
Prenumerera