Transcriptional Analysis of Vitiligo Skin Reveals the Alteration of WNT Pathway: A Promising Target for Repigmenting Vitiligo Patients

Claire Regazzetti, Florence Joly, Carine Marty, Michel Rivier, Bruno Mehul, Pascale Reiniche, Carine Mounier, Yves Rival, David Piwnica, Marine Cavalié, Bérengère Chignon-Sicard, Robert Ballotti, Johannes Voegel, Thierry Passeron, Claire Regazzetti, Florence Joly, Carine Marty, Michel Rivier, Bruno Mehul, Pascale Reiniche, Carine Mounier, Yves Rival, David Piwnica, Marine Cavalié, Bérengère Chignon-Sicard, Robert Ballotti, Johannes Voegel, Thierry Passeron

Abstract

Vitiligo affects 1% of the worldwide population. Halting disease progression and repigmenting the lesional skin represent the two faces of therapeutic challenge in vitiligo. We performed transcriptome analysis on lesional, perilesional, and non-depigmented skin from vitiligo patients and on matched skin from healthy subjects. We found a significant increase in CXCL10 in non-depigmented and perilesional vitiligo skin compared with levels in healthy control skin; however, neither CXCL10 nor other immune factors were deregulated in depigmented vitiligo skin. Interestingly, the WNT pathway, which is involved in melanocyte differentiation, was altered specifically in vitiligo skin. We demonstrated that oxidative stress decreases WNT expression/activation in keratinocytes and melanocytes. We developed an ex vivo skin model and confirmed the decrease activation of the WNT pathway in human skin subjected to oxidative stress. Finally, using pharmacological agents that activate the WNT pathway, we treated ex vivo depigmented skin from vitiligo patients and successfully induced differentiation of resident stem cells into pre-melanocytes. Our results shed light on the previously unrecognized role of decreased WNT activation in the prevention of melanocyte differentiation in depigmented vitiligo skin. Furthermore, these results support further clinical exploration of WNT agonists to repigment vitiligo lesions.

References

    1. PLoS One. 2012;7(12):e51040
    1. Br J Dermatol. 2013 Jan;168(1):5-19
    1. J Invest Dermatol. 2012 Nov;132(11):2502-4
    1. Proc Natl Acad Sci U S A. 1998 Dec 8;95(25):14863-8
    1. FASEB J. 2013 Aug;27(8):3113-22
    1. Sci Transl Med. 2013 Feb 27;5(174):174ra28
    1. J Cell Sci. 2010 Mar 15;123(Pt 6):853-60
    1. Bioinformatics. 2004 Nov 22;20(17):3246-8
    1. Bioinformatics. 2003 Jan 22;19(2):185-93
    1. J Invest Dermatol. 2015 Jun;135(6):1521-32
    1. J Invest Dermatol. 2015 Jul;135(7):1810-9
    1. Cancer Lett. 2004 Aug 30;212(2):225-31
    1. Br J Dermatol. 2009 Jul;161(1):134-9
    1. J Invest Dermatol. 1997 Sep;109(3):310-3
    1. J Invest Dermatol. 2015 Apr;135(4):970-4
    1. J Invest Dermatol. 2012 Feb;132(2):268-73
    1. Cell. 2013 Nov 21;155(5):1022-33
    1. J Invest Dermatol. 2013 Dec;133(12):2753-62
    1. J Invest Dermatol. 2012 Nov;132(11):2601-9
    1. PLoS One. 2013;8(3):e59782
    1. JAMA Dermatol. 2013 Feb;149(2):159-64
    1. J Invest Dermatol. 2012 Jul;132(7):1869-76
    1. Sci Transl Med. 2014 Feb 12;6(223):223ra23
    1. Nat Genet. 2012 May 06;44(6):676-80

Source: PubMed

3
Prenumerera