Effects of Leucine Administration in Sarcopenia: A Randomized and Placebo-controlled Clinical Trial

Francisco M Martínez-Arnau, Rosa Fonfría-Vivas, Cristina Buigues, Yolanda Castillo, Pilar Molina, Aldert J Hoogland, Femke van Doesburg, Leo Pruimboom, Julio Fernández-Garrido, Omar Cauli, Francisco M Martínez-Arnau, Rosa Fonfría-Vivas, Cristina Buigues, Yolanda Castillo, Pilar Molina, Aldert J Hoogland, Femke van Doesburg, Leo Pruimboom, Julio Fernández-Garrido, Omar Cauli

Abstract

Treating sarcopenia in older individuals remains a challenge, and nutritional interventions present promising approaches in individuals that perform limited physical exercise. We assessed the efficacy of leucine administration to evaluate whether the regular intake of this essential amino acid can improve muscle mass, muscle strength and functional performance and respiratory muscle function in institutionalized older individuals. The study was a placebo-controlled, randomized, double-blind design in fifty participants aged 65 and over (ClinicalTrials.gov identifier NCT03831399). The participants were randomized to a parallel group intervention of 13 weeks' duration with a daily intake of leucine (6 g/day) or placebo (lactose, 6 g/day). The primary outcome was to study the effect on sarcopenia and respiratory muscle function. The secondary outcomes were changes in the geriatric evaluation scales, such as cognitive function, functional impairment and nutritional assessments. We also evaluated whether leucine administration alters blood analytical parameters and inflammatory markers. Administration of leucine was well-tolerated and significantly improves some criteria of sarcopenia in elderly individuals such as functional performance measured by walking time (p = 0.011), and improved lean mass index. For respiratory muscle function, the leucine-treated group improved significantly (p = 0.026) in maximum static expiratory force compared to the placebo. No significant effects on functional impairment, cognitive function or nutritional assessment, inflammatory cytokines IL-6, TNF-alpha were observed after leucine administration compared to the placebo. The use of l-leucine supplementation can have some beneficial effects on sarcopenia and could be considered for the treatment of sarcopenia in older individuals.

Keywords: elderly; muscle mass; muscle strength; nutrition; respiratory muscles; sarcopenia.

Conflict of interest statement

Aldert J. Hoogland and Femke van Doesburg are product developers for the company (Bonusan) that provided the leucine and the placebo for the study, and they performed the blind randomization. Aldert J. Hoogland and Femke van Doesburg never saw any of the participants or saw any of the results in this study. The remaining authors (including the corresponding author, Dr. Omar Cauli) declare that they have no competing interests, and they were blind to the drug treatment until the completion of the study.

Figures

Figure 1
Figure 1
Study flowchart.
Figure 2
Figure 2
Effect of Leucine administration on sarcopenia criteria (A) and muscle respiratory sarcopenia (B). (A) Comparison of percentage changes compared to baseline values after leucine or placebo treatment for muscle mass index, handgrip strength and walking time * p = 0.011. (B) Comparison of percentage changes compared to baseline values after leucine or placebo treatment for respiratory muscle function * p = 0.026. Leucine group (LG); placebo group (PG); maximum static inspiratory (MIP) and expiratory (MEP) respiratory pressures at the mouth; peak expiratory flow (PEF).

References

    1. Cruz-Jentoft A.J., Baeyens J.P., Bauer J.M., Boirie Y., Cederholm T., Landi F., Martin F.C., Michel J.-P., Rolland Y., Schneider S.M., et al. Sarcopenia: European consensus on definition and diagnosis: Report of the European Working Group on Sarcopenia in Older People. Age Ageing. 2010;39:412–423. doi: 10.1093/ageing/afq034.
    1. Janssen I. The epidemiology of sarcopenia. Clin. Geriatr. Med. 2011;27:355–363. doi: 10.1016/j.cger.2011.03.004.
    1. von Haehling S., Morley J.E., Anker S.D. An overview of sarcopenia: Facts and numbers on prevalence and clinical impact. J. Cachexia Sarcopenia Muscle. 2010;1:129–133. doi: 10.1007/s13539-010-0014-2.
    1. Follis S., Cook A., Bea J.W., Going S.B., Laddu D., Cauley J.A., Shadyab A.H., Stefanick M.L., Chen Z. Association between sarcopenic obesity and falls in a multiethnic cohort of postmenopausal women. J. Am. Geriatr. Soc. 2018;66:2314–2320. doi: 10.1111/jgs.15613.
    1. Sim M., Prince R.L., Scott D., Daly R.M., Duque G., Inderjeeth C.A., Zhu K., Woodman R.J., Hodgson J.M., Lewis J.R. Utility of four sarcopenia criteria for the prediction of falls-related hospitalization in older Australian women. Osteoporos. Int. 2019;30:167–176. doi: 10.1007/s00198-018-4755-7.
    1. Srikanthan P., Karlamangla A.S. Muscle mass index as a predictor of longevity in older adults. Am. J. Med. 2014;127:547–553. doi: 10.1016/j.amjmed.2014.02.007.
    1. Cuthbertson D.J., Bell J.A., Ng S.Y., Kemp G.J., Kivimaki M., Hamer M. Dynapenic obesity and the risk of incident Type 2 diabetes: The English Longitudinal Study of Ageing. Diabet. Med. 2016;33:1052–1059. doi: 10.1111/dme.12991.
    1. Srikanthan P., Hevener A.L., Karlamangla A.S. Sarcopenia exacerbates obesity-associated insulin resistance and dysglycemia: Findings from the National Health and Nutrition Examination Survey III. PLoS ONE. 2010;5:e10805. doi: 10.1371/journal.pone.0010805.
    1. Cruz-Jentoft A.J., Dawson Hughes B., Scott D., Sanders K.M., Rizzoli R. Nutritional strategies for maintaining muscle mass and strength from middle age to later life: A narrative review. Maturitas. 2020;132:57–64. doi: 10.1016/j.maturitas.2019.11.007.
    1. Masanés F., Rojano i Luque X., Salvà A., Serra-Rexach J.A., Artaza I., Formiga F., Cuesta F., López Soto A., Ruiz D., Cruz-Jentoft A.J. Cut-off points for muscle mass—Not grip strength or gait speed—Determine variations in sarcopenia prevalence. J. Nutr. Heal. Aging. 2017;21:825–829. doi: 10.1007/s12603-016-0844-5.
    1. Santos C.D.S., Nascimento F.E.L. Isolated branched-chain amino acid intake and muscle protein synthesis in humans: A biochemical review. Einstein (Sao Paulo) 2019;17:eRB4898. doi: 10.31744/einstein_journal/2019RB4898.
    1. Kouw I.W., Holwerda A.M., Trommelen J., Kramer I.F., Bastiaanse J., Halson S.L., Wodzig W.K., Verdijk L.B., van Loon L.J. Protein Ingestion before Sleep Increases Overnight Muscle Protein Synthesis Rates in Healthy Older Men: A Randomized Controlled Trial. J. Nutr. 2017;147:2252–2261. doi: 10.3945/jn.117.254532.
    1. Hamarsland H., Nordengen A.L., Nyvik Aas S., Holte K., Garthe I., Paulsen G., Cotter M., Børsheim E., Benestad H.B., Raastad T. Native whey protein with high levels of leucine results in similar post-exercise muscular anabolic responses as regular whey protein: A randomized controlled trial. J. Int. Soc. Sports Nutr. 2017;14:43. doi: 10.1186/s12970-017-0202-y.
    1. Martínez-Arnau F.M., Fonfría-Vivas R., Cauli O. Beneficial effects of leucine supplementation on criteria for sarcopenia: A systematic review. Nutrients. 2019;11:2504. doi: 10.3390/nu11102504.
    1. Komar B., Schwingshackl L., Hoffmann G. Effects of leucine-rich protein supplements on anthropometric parameter and muscle strength in the elderly: A systematic review and meta-analysis. J. Nutr. Heal. Aging. 2015;19:437–446. doi: 10.1007/s12603-014-0559-4.
    1. Bonnefoy M., Gilbert T., Bruyère O., Paillaud E., Raynaud-Simon A., Guérin O., Jeandel C., Le Sourd B., Haine M., Ferry M., et al. Quels bénéfices attendre de la supplémentation en protéines pour limiter la perte de masse et de fonction musculaire chez le sujet âgé fragile? Geriatr. Psychol. Neuropsychiatr. Vieil. 2019;17:137–143.
    1. Janssen I., Heymsfield S.B., Baumgartner R.N., Ross R. Estimation of skeletal muscle mass by bioelectrical impedance analysis. J. Appl. Physiol. 2000;89:465–471. doi: 10.1152/jappl.2000.89.2.465.
    1. Miller M.R., Hankinson J., Brusasco V., Burgos F., Casaburi R., Coates A., Crapo R., Enright P., van der Grinten C.P.M., Gustafsson P., et al. Standardisation of spirometry. Eur. Respir. J. 2005;26:319–338. doi: 10.1183/09031936.05.00034805.
    1. Laveneziana P., Albuquerque A., Aliverti A., Babb T., Barreiro E., Dres M., Dubé B.P., Fauroux B., Gea J., Guenette J.A., et al. ERS statement on respiratory muscle testing at rest and during exercise. Eur. Respir. J. 2019;53 doi: 10.1183/13993003.01214-2018.
    1. ATS/ERS Statement on respiratory muscle testing. Am. J. Respir. Crit. Care Med. 2002;166:518–624. doi: 10.1164/rccm.166.4.518.
    1. Mahoney F.I., Barthel D.W. Functional evaluation: The Barthel index. Md. State Med. J. 1965;14:61–65.
    1. Hickey G.L., Grant S.W., Dunning J., Siepe M. Statistical primer: Sample size and power calculations-why, when and how? Eur. J. Cardio Thorac. Surg. 2018;54:4–9. doi: 10.1093/ejcts/ezy169.
    1. Lobo A., Ezquerra J., Gómez Burgada F., Sala J.M., Seva Díaz A. Cognocitive mini-test (a simple practical test to detect intellectual changes in medical patients) Actas Luso Esp. Neurol. Psiquiatr. Cienc. Afines. 1979;7:189–202.
    1. Vellas B., Villars H., Abellan G., Soto M.E., Rolland Y., Guigoz Y., Morley J.E., Chumlea W., Salva A., Rubenstein L.Z., et al. Overview of the MNA®—Its history and challenges. J. Nutr. Heal. Aging. 2006;10:456–463.
    1. Charlson M.E., Pompei P., Ales K.L., MacKenzie C.R. A new method of classifying prognostic comorbidity in longitudinal studies: Development and validation. J. Chronic Dis. 1987;40:373–383. doi: 10.1016/0021-9681(87)90171-8.
    1. Setiati S., Istanti R., Andayani R., Kuswardhani R.A.T., Aryana I.G.P.S., Putu I.D., Apandi M., Ichwani J., Soewoto S., Dinda R., et al. Cut-off of anthropometry measurement and nutritional status among elderly outpatient in Indonesia: Multi-centre study. Acta Med. Indones. 2010;42:224–230.
    1. Makanae Y., Fujita S. Role of Exercise and Nutrition in the Prevention of Sarcopenia. J. Nutr. Sci. Vitaminol. 2015;61:S125–S127. doi: 10.3177/jnsv.61.S125.
    1. Kirk B., Mooney K., Amirabdollahian F., Khaiyat O. Exercise and Dietary-Protein as a Countermeasure to Skeletal Muscle Weakness: Liverpool Hope University—Sarcopenia Aging Trial (LHU-SAT) Front. Physiol. 2019;10:445. doi: 10.3389/fphys.2019.00445.
    1. Tang J.E., Moore D.R., Kujbida G.W., Tarnopolsky M.A., Phillips S.M. Ingestion of whey hydrolysate, casein, or soy protein isolate: Effects on mixed muscle protein synthesis at rest and following resistance exercise in young men. J. Appl. Physiol. 2009;107:987–992. doi: 10.1152/japplphysiol.00076.2009.
    1. Abe S., Ezaki O., Suzuki M. Medium-chain triglycerides in combination with leucine and Vitamin D increase muscle strength and function in frail elderly adults in a randomized controlled trial. J. Nutr. 2016;146:1017–1026. doi: 10.3945/jn.115.228965.
    1. Bukhari S.S.I., Phillips B.E., Wilkinson D.J., Limb M.C., Rankin D., Mitchell W.K., Kobayashi H., Greenhaff P.L., Smith K., Atherton P.J. Intake of low-dose leucine-rich essential amino acids stimulates muscle anabolism equivalently to bolus whey protein in older women at rest and after exercise. Am. J. Physiol. Endocrinol. Metab. 2015;308:E1056–E1065. doi: 10.1152/ajpendo.00481.2014.
    1. Ispoglou T., White H., Preston T., McElhone S., McKenna J., Hind K. Double-blind, placebo-controlled pilot trial of L-Leucine-enriched amino-acid mixtures on body composition and physical performance in men and women aged 65–75 years. Eur. J. Clin. Nutr. 2016;70:182–188. doi: 10.1038/ejcn.2015.91.
    1. Kim H.K., Suzuki T., Saito K., Yoshida H., Kobayashi H., Kato H., Katayama M. Effects of exercise and amino acid supplementation on body composition and physical function in community-dwelling elderly Japanese sarcopenic women: A randomized controlled trial. J. Am. Geriatr. Soc. 2012;60:16–23. doi: 10.1111/j.1532-5415.2011.03776.x.
    1. Dal Negro R.W., Testa A., Aquilani R., Tognella S., Pasini E., Barbieri A., Boschi F. Essential amino acid supplementation in patients with severe COPD: A step towards home rehabilitation. Monaldi Arch. Chest Dis. 2012;77:67–75. doi: 10.4081/monaldi.2012.154.
    1. Rondanelli M., Klersy C., Terracol G., Talluri J., Maugeri R., Guido D., Faliva M.A., Solerte B.S., Fioravanti M., Lukaski H., et al. Whey protein, amino acids, and vitamin D supplementation with physical activity increases fat-free mass and strength, functionality, and quality of life and decreases inflammation in sarcopenic elderly. Am. J. Clin. Nutr. 2016;103:830–840. doi: 10.3945/ajcn.115.113357.
    1. Verreijen A.M., Verlaan S., Engberink M.F., Swinkels S., de Vogel-van den Bosch J., Weijs P.J.M. A high whey protein-, leucine-, and vitamin D-enriched supplement preserves muscle mass during intentional weight loss in obese older adults: A double-blind randomized controlled trial. Am. J. Clin. Nutr. 2015;101:279–286. doi: 10.3945/ajcn.114.090290.
    1. Verhoeven S., Vanschoonbeek K., Verdijk L.B., Koopman R., Wodzig W.K.W.H., Dendale P., van Loon L.J.C. Long-term leucine supplementation does not increase muscle mass or strength in healthy elderly men. Am. J. Clin. Nutr. 2009;89:1468–1475. doi: 10.3945/ajcn.2008.26668.
    1. Leenders M., Verdijk L.B., van der Hoeven L., van Kranenburg J., Hartgens F., Wodzig W.K.W.H., Saris W.H.M., van Loon L.J.C. Prolonged leucine supplementation does not augment muscle mass or affect glycemic control in elderly type 2 diabetic men. J. Nutr. 2011;141:1070–1076. doi: 10.3945/jn.111.138495.
    1. Tieland M., Trouwborst I., Clark B.C. Skeletal muscle performance and ageing. J. Cachexia Sarcopenia Muscle. 2018;9:3–19. doi: 10.1002/jcsm.12238.
    1. McGregor R.A., Cameron-Smith D., Poppitt S.D. It is not just muscle mass: A review of muscle quality, composition and metabolism during ageing as determinants of muscle function and mobility in later life. Longev. Heal. 2014;3:9. doi: 10.1186/2046-2395-3-9.
    1. Bano G., Trevisan C., Carraro S., Solmi M., Luchini C., Stubbs B., Manzato E., Sergi G., Veronese N. Inflammation and sarcopenia: A systematic review and meta-analysis. Maturitas. 2017;96:10–15. doi: 10.1016/j.maturitas.2016.11.006.
    1. del Campo Cervantes J.M., Macías Cervantes M.H., Monroy Torres R. Effect of a resistance training program on sarcopenia and functionality of the older adults living in a nursing home. J. Nutr. Heal. Aging. 2019;23:829–836. doi: 10.1007/s12603-019-1261-3.
    1. Najafi Z., Kooshyar H., Mazloom R., Azhari A. The effect of fun physical activities on sarcopenia progression among elderly residents in nursing homes: A randomized controlled trial. J. Caring Sci. 2018;7:137–142. doi: 10.15171/jcs.2018.022.
    1. Elliott J.E., Greising S.M., Mantilla C.B., Sieck G.C. Functional impact of sarcopenia in respiratory muscles. Respir. Physiol. Neurobiol. 2016;226:137–146. doi: 10.1016/j.resp.2015.10.001.
    1. Bone A.E., Hepgul N., Kon S., Maddocks M. Sarcopenia and frailty in chronic respiratory disease. Chronic Respir. Dis. 2017;14:85–99. doi: 10.1177/1479972316679664.
    1. Knowles J.B., Fairbarn M.S., Wiggs B.J., Chan-Yan C., Pardy R.L. Dietary supplementation and respiratory muscle performance in patients with COPD. Chest. 1988;93:977–983. doi: 10.1378/chest.93.5.977.
    1. Borghi-Silva A., Baldissera V., Sampaio L.M.M., Pires-DiLorenzo V.A., Jamami M., Demonte A., Marchini J.S., Costa D. L-carnitine as an ergogenic aid for patients with chronic obstructive pulmonary disease submitted to whole-body and respiratory muscle training programs. Braz. J. Med. Biol. Res. 2006;39:465–474. doi: 10.1590/S0100-879X2006000400006.
    1. Rafiq R., Prins H.J., Boersma W.G., Daniels J.M.A., den Heijer M., Lips P., de Jongh R.T. Effects of daily vitamin D supplementation on respiratory muscle strength and physical performance in vitamin D-deficient COPD patients: A pilot trial. Int. J. COPD. 2017;12:2583–2592. doi: 10.2147/COPD.S132117.
    1. Rogers R.M., Donahoe M., Costantino J. Physiologic effects of oral supplemental feeding in malnourished patients with chronic obstructive pulmonary disease: A randomized control study. Am. Rev. Respir. Dis. 1992;146:1511–1517. doi: 10.1164/ajrccm/146.6.1511.
    1. Ferreira I.M., Verreschi I.T., Nery L.E., Goldstein R.S., Zamel N., Brooks D., Jardim J.R. The influence of 6 months of oral anabolic steroids on body mass and respiratory muscles in undernourished COPD patients. Chest. 1998;114:19–28. doi: 10.1378/chest.114.1.19.
    1. De Bandt J.-P. Leucine and mammalian target of rapamycin-dependent activation of muscle protein synthesis in aging. J. Nutr. 2016;146:2616S–2624S. doi: 10.3945/jn.116.234518.
    1. Brunetta H.S., de Camargo C.Q., Nunes E.A. Does l-leucine supplementation cause any effect on glucose homeostasis in rodent models of glucose intolerance? A systematic review. Amino Acids. 2018;50:1663–1678. doi: 10.1007/s00726-018-2658-8.
    1. Lollo P.C.B., Silva L.B.C., Batista T.M., Morato P.N., Moura C.S., Cruz A.G., Faria J.A.F., Carneiro E.M., Amaya-Farfan J. Effects of whey protein and casein plus leucine on diaphragm the mTOR pathway of sedentary, trained rats. Food Res. Int. 2012;49:416–424. doi: 10.1016/j.foodres.2012.07.024.
    1. Can B., Kara O., Kizilarslanoglu M.C., Arik G., Aycicek G.S., Sumer F., Civelek R., Demirtas C., Ulger Z. Serum markers of inflammation and oxidative stress in sarcopenia. Aging Clin. Exp. Res. 2017;29:745–752. doi: 10.1007/s40520-016-0626-2.
    1. Bian A.L., Hu H.Y., Rong Y.D., Wang J., Wang J.X., Zhou X.Z. A study on relationship between elderly sarcopenia and inflammatory factors IL-6 and TNF-α. Eur. J. Med. Res. 2017;22:25. doi: 10.1186/s40001-017-0266-9.
    1. Rong Y.D., Bian A.L., Hu H.Y., Ma Y., Zhou X.Z. Study on relationship between elderly sarcopenia and inflammatory cytokine IL-6, anti-inflammatory cytokine IL-10. BMC Geriatr. 2018;18:308. doi: 10.1186/s12877-018-1007-9.
    1. Remelli F., Vitali A., Zurlo A., Volpato S. Vitamin D deficiency and sarcopenia in older persons. Nutrients. 2019;11:2861. doi: 10.3390/nu11122861.
    1. Pludowski P., Holick M.F., Grant W.B., Konstantynowicz J., Mascarenhas M.R., Haq A., Povoroznyuk V., Balatska N., Paula A., Karonova T., et al. Vitamin D supplementation guidelines. J. Steroid Biochem. Mol. Biol. 2017;175:11. doi: 10.1016/j.jsbmb.2017.01.021.
    1. Pfeiffer C.M., Sternberg M.R., Schleicher R.L., Haynes B.M.H., Rybak M.E., Pirkle J.L. The CDC’s second national report on biochemical indicators of diet and nutrition in the U.S. population is a valuable tool for researchers and policy makers. J. Nutr. 2013;143:938S–947S. doi: 10.3945/jn.112.172858.
    1. Holick M.F., Binkley N.C., Bischoff-Ferrari H.A., Gordon C.M., Hanley D.A., Heaney R.P., Murad M.H., Weaver C.M. Evaluation, treatment, and prevention of vitamin D deficiency: An endocrine society clinical practice guideline. J. Clin. Endocrinol. Metab. 2011;96:1911–1930. doi: 10.1210/jc.2011-0385.
    1. Tieland M., Verdijk L.B., de Groot L.C.P.G.M., van Loon L.J.C. Handgrip strength does not represent an appropriate measure to evaluate changes in muscle strength during an exercise intervention program in frail older people. Int. J. Sport Nutr. Exerc. Metab. 2015;25:27–36. doi: 10.1123/ijsnem.2013-0123.
    1. Coelho-Júnior H.J., de Oliveira Gonçalvez I., Sampaio R.A.C., Sewo Sampaio P.Y., Cadore E.L., Izquierdo M., Marzetti E., Uchida M.C. Periodized and non-periodized resistance training programs on body composition and physical function of older women. Exp. Gerontol. 2019;121:10–18. doi: 10.1016/j.exger.2019.03.001.
    1. Osuka Y., Kojima N., Wakaba K., Miyauchi D., Tanaka K., Kim H. Effects of resistance training and/or beta-hydroxy-beta-methylbutyrate supplementation on muscle mass, muscle strength and physical performance in older women with reduced muscle mass: Protocol for a randomised, double-blind, placebo-controlled trial. BMJ Open. 2019;9:e025723. doi: 10.1136/bmjopen-2018-025723.
    1. Tsuzuku S., Kajioka T., Sakakibara H., Shimaoka K. Slow movement resistance training using body weight improves muscle mass in the elderly: A randomized controlled trial. Scand. J. Med. Sci. Sports. 2018;28:1339–1344. doi: 10.1111/sms.13039.

Source: PubMed

3
Prenumerera