Circulating miR-19b-3p as a Novel Prognostic Biomarker for Acute Heart Failure

Yang Su, Yuxi Sun, Yansong Tang, Hao Li, Xiaoyu Wang, Xin Pan, Weijing Liu, Xianling Zhang, Fenglei Zhang, Yawei Xu, Chunxi Yan, Sang-Bing Ong, Dachun Xu, Yang Su, Yuxi Sun, Yansong Tang, Hao Li, Xiaoyu Wang, Xin Pan, Weijing Liu, Xianling Zhang, Fenglei Zhang, Yawei Xu, Chunxi Yan, Sang-Bing Ong, Dachun Xu

Abstract

Background Circulating microRNAs are emerging biomarkers for heart failure (HF). Our study aimed to assess the prognostic value of microRNA signature that is differentially expressed in patients with acute HF. Methods and Results Our study comprised a screening cohort of 15 patients with AHF and 5 controls, a PCR-discovery cohort of 50 patients with AHF and 26 controls and a validation cohort of 564 patients with AHF from registered study DRAGON-HF (Diagnostic, Risk Stratification and Prognostic Value of Novel Biomarkers in Patients With Heart Failure). Through screening by RNA-sequencing and verification by reverse-transcription quantitative polymerase chain reaction, 9 differentially expressed microRNAs were verified (miR-939-5p, miR-1908-5p, miR-7706, miR-101-3p, miR-144-3p, miR-4732-3p, miR-3615, miR-484 and miR-19b-3p). Among them, miR-19b-3p was identified as the microRNA signature with the highest fold-change of 8.4 and the strongest prognostic potential (area under curve with 95% CI, 0.791, 0.654-0.927). To further validate its prognostic value, in the validation cohort, the baseline level of miR-19b-3p was measured. During a follow-up period of 19.1 (17.7, 20.7) months, primary end point comprising of all-cause mortality or readmission due to HF occurred in 48.9% patients, while patients in the highest quartile of miR-19b-3p level presented the worst survival (Log-rank P<0.001). Multivariate Cox model showed that the level of miR-19b-3p could independently predict the occurrence of primary end point (adjusted hazard ratio,1.39; 95% CI, 1.18-1.64). In addition, miR-19b-3p positively correlated with soluble suppression of tumorigenicity 2 and echocardiographic indexes of left ventricular hypertrophy. Conclusions Circulating miR-19b-3p could be a valuable prognostic biomarker for AHF. In addition, a high level of circulating miR-19b-3p might indicate ventricular hypertrophy in AHF subjects. Registration URL: https://www.clinicaltrials.gov. Unique Identifier: NCT03727828.

Keywords: RNA‐sequencing; acute heart failure; biomarker; miR‐19b‐3p; prognosis.

Figures

Figure 1. Flow chart of the study.
Figure 1. Flow chart of the study.
AHF indicates acute heart failure; NYHA, New York Heart Association; ROC, receiver operating characteristics; and RT‐qPCR, Quantitative Real‐time Polymerase Chain Reaction.
Figure 2. Relative expression of 9 verified…
Figure 2. Relative expression of 9 verified miRNAs between patients with AHF and control.
miRNA candidates were verified in 50 AHFs and 26 controls by real‐time quantitative polymerase chain reaction. Out of 40 candidates, 9 were verified with significant differential expression and miR‐19b‐3p presented the highest relative expression fold‐change of 8.4. AHF indicates acute heart failure.
Figure 3. Receiver operating characteristic curves of…
Figure 3. Receiver operating characteristic curves of 9 validated miRNAs for diagnosis of AHF.
Receiver operating characteristic curves were performed to test the diagnostic value of 9 miRNA candidates for AHF in PCR‐discovery cohort. miR‐19b‐3p was found to have the highest discriminative potential for AHF (AUC=0.753). AHF denotes acute heart failure, AUC area under curve. Lower right annotation in each figure showed AUC with 95% CI and P value.
Figure 4. Prognostic power of 9 validated…
Figure 4. Prognostic power of 9 validated miRNAs by receiver operating characteristic curves.
Receiver operating characteristic curves were performed to test the diagnostic value of 9 miRNA candidates for AHF in PCR‐discovery cohort. miR‐19b‐3p was found to have the highest discriminative potential for AHF (AUC=0.753). AHF denotes acute heart failure, AUC area under curve. Lower right annotation in each figure showed AUC with 95% CI and P value.
Figure 5. Survival analysis of patients with…
Figure 5. Survival analysis of patients with AHF divided by baseline level of miR‐19b‐3p.
Survival analysis of miR‐19b‐3p for primary end point (all‐cause mortality or readmission due to HF) were performed and survival curves with 95% CI shown with dotted line in corresponding color. Through a follow‐up period of 19.1 [17.7, 20.7] months, survival curves showed group with higher level of miR‐19b‐3p presented worse event‐free survival, with Log‐Rank P value <0.001. Q1, Q2, Q3 and Q4 represent patients with AHF with relative expression of miR‐19b‐3p level lower than 1.63, 1.63‐2.15, 2.15‐3.41, and higher than 3.41, respectively.
Figure 6. The Forest plot of multivariate…
Figure 6. The Forest plot of multivariate Cox proportional hazard regression model for prognostic evaluation.
The level of miR‐19b‐3p, sST2, and NT‐proBNP was analyzed after logarithmic transformation.

References

    1. Ponikowski P, Voors AA, Anker SD, Bueno H, Cleland JG, Coats AJ, Falk V, Gonzalez‐Juanatey JR, Harjola VP, Jankowska EA, et al. 2016 ESC guidelines for the diagnosis and treatment of acute and chronic heart failure: the task force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC). Developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur J Heart Fail. 2016;18:891–975. doi: 10.1093/eurheartj/ehw128
    1. Vegter EL, van der Meer P, de Windt LJ, Pinto YM, Voors AA. Micrornas in heart failure: from biomarker to target for therapy. Eur J Heart Fail. 2016;18:457–468. doi: 10.1002/ejhf.495
    1. Gomes CPC, Schroen B, Kuster GM, Robinson EL, Ford K, Squire IB, Heymans S, Martelli F, Emanueli C, Devaux Y, et al. Regulatory RNAs in heart failure. Circulation. 2020;141:313–328. doi: 10.1161/CIRCULATIONAHA.119.042474
    1. Vogel B, Keller A, Frese KS, Leidinger P, Sedaghat‐Hamedani F, Kayvanpour E, Kloos W, Backe C, Thanaraj A, Brefort T, et al. Multivariate miRNA signatures as biomarkers for non‐ischaemic systolic heart failure. Eur Heart J. 2013;34:2812–2822. doi: 10.1093/eurheartj/eht256
    1. Gupta SK, Foinquinos A, Thum S, Remke J, Zimmer K, Bauters C, de Groote P, Boon RA, de Windt LJ, Preissl S, et al. Preclinical development of a microRNA‐based therapy for elderly patients with myocardial infarction. J Am Coll Cardiol. 2016;68:1557–1571. doi: 10.1016/j.jacc.2016.07.739
    1. Goren Y, Kushnir M, Zafrir B, Tabak S, Lewis BS, Amir O. Serum levels of microRNAs in patients with heart failure. Eur J Heart Fail. 2012;14:147–154. doi: 10.1093/eurjhf/hfr155
    1. Wong LL, Zou R, Zhou L, Lim JY, Phua DCY, Liu C, Chong JPC, Ng JYX, Liew OW, Chan SP, et al. Combining circulating microRNA and NT‐proBNP to detect and categorize heart failure subtypes. J Am Coll Cardiol. 2019;73:1300–1313. doi: 10.1016/j.jacc.2018.11.060
    1. Zhu X, Wang H, Liu F, Chen L, Luo W, Su P, Li W, Yu L, Yang X, Cai J. Identification of micro‐RNA networks in end‐stage heart failure because of dilated cardiomyopathy. J Cell Mol Med. 2013;17:1173–1187. doi: 10.1111/jcmm.12096
    1. Ovchinnikova ES, Schmitter D, Vegter EL, ter Maaten JM, Valente MAE, Liu LCY, van der Harst P, Pinto YM, de Boer RA, Meyer S, et al. Signature of circulating microRNAs in patients with acute heart failure. Eur J Heart Fail. 2016;18:414–423. doi: 10.1002/ejhf.332
    1. Gurha P, Abreu‐Goodger C, Wang T, Ramirez MO, Drumond AL, van Dongen S, Chen Y, Bartonicek N, Enright AJ, Lee B, et al. Targeted deletion of microRNA‐22 promotes stress‐induced cardiac dilation and contractile dysfunction. Circulation. 2012;125:2751–2761. doi: 10.1161/CIRCULATIONAHA.111.044354
    1. Gaede L, Liebetrau C, Blumenstein J, Troidl C, Dorr O, Kim WK, Gottfried K, Voss S, Berkowitsch A, Walther T, et al. Plasma microRNA‐21 for the early prediction of acute kidney injury in patients undergoing major cardiac surgery. Nephrol Dial Transplant. 2016;31:760–766. doi: 10.1093/ndt/gfw007
    1. Sun SQ, Zhang T, Ding D, Zhang WF, Wang XL, Sun Z, Hu LH, Qin SY, Shen LH, He B. Circulating microRNA‐188, ‐30a, and ‐30e as early biomarkers for contrast‐induced acute kidney injury. J Am Heart Assoc. 2016;5:e004138. doi: 10.1161/JAHA.116.004138
    1. Lang RM, Bierig M, Devereux RB, Flachskampf FA, Foster E, Pellikka PA, Picard MH, Roman MJ, Seward J, Shanewise JS, et al. Recommendations for chamber quantification: a report from the American Society of Echocardiography's guidelines and standards committee and the chamber quantification writing group, developed in conjunction with the European Association of Echocardiography, a branch of the European Society of Cardiology. J Am Soc Echocardiogr. 2005;18:1440–1463. doi: 10.1016/j.echo.2005.10.005
    1. Xiao J, Gao R, Bei Y, Zhou Q, Zhou Y, Zhang H, Jin M, Wei S, Wang K, Xu X, et al. Circulating miR‐30d predicts survival in patients with acute heart failure. Cell Physiol Biochem. 2017;41:865–874. doi: 10.1159/000459899
    1. Weir RA, Miller AM, Murphy GE, Clements S, Steedman T, Connell JM, McInnes IB, Dargie HJ, McMurray JJ. Serum soluble ST2: a potential novel mediator in left ventricular and infarct remodeling after acute myocardial infarction. J Am Coll Cardiol. 2010;55:243–250. doi: 10.1016/j.jacc.2009.08.047
    1. Nachamkin I, Panaro NJ, Li M, Ung H, Yuen PK, Kricka LJ, Wilding P. Agilent 2100 bioanalyzer for restriction fragment length polymorphism analysis of the campylobacter jejuni flagellin gene. J Clin Microbiol. 2001;39:754–757. doi: 10.1128/JCM.39.2.754-757.2001
    1. Nair SS, Luu PL, Qu W, Maddugoda M, Huschtscha L, Reddel R, Chenevix‐Trench G, Toso M, Kench JG, Horvath LG, et al. Guidelines for whole genome bisulphite sequencing of intact and FFPET DNA on the illumina HiSEQ X Ten. Epigenetics Chromatin. 2018;11:24. doi: 10.1186/s13072-018-0194-0
    1. de Ronde MWJ, Ruijter JM, Lanfear D, Bayes‐Genis A, Kok MGM, Creemers EE, Pinto YM, Pinto‐Sietsma SJ. Practical data handling pipeline improves performance of qPCR‐based circulating miRNA measurements. RNA. 2017;23:811–821. doi: 10.1261/rna.059063.116
    1. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real‐time quantitative PCR and the 2(‐Delta Delta C(T)) method. Methods. 2001;25:402–408. doi: 10.1006/meth.2001.1262
    1. Yusuf NH, Ong WD, Redwan RM, Latip MA, Kumar SV. Discovery of precursor and mature microRNAs and their putative gene targets using high‐throughput sequencing in pineapple (Ananas comosus var. comosus). Gene. 2015;571:71–80. doi: 10.1016/j.gene.2015.06.050
    1. Griffiths‐Jones S, Saini HK, van Dongen S, Enright AJ. Mirbase: tools for microRNA genomics. Nucleic Acids Res. 2008;36:D154–D158.
    1. Anders S, Huber W. Differential expression analysis for sequence count data. Genome Biol. 2010;11:R106.
    1. John B, Enright AJ, Aravin A, Tuschl T, Sander C, Marks DS. Human microRNA targets. PLoS Biol. 2004;2:e363. doi: 10.1371/journal.pbio.0020363
    1. Scrutinio D, Conserva F, Passantino A, Iacoviello M, Lagioia R, Gesualdo L. Circulating microRNA‐150‐5p as a novel biomarker for advanced heart failure: a genome‐wide prospective study. J Heart Lung Transplant. 2017;36:616–624. doi: 10.1016/j.healun.2017.02.008
    1. van Boven N, Kardys I, van Vark LC, Akkerhuis KM, de Ronde MWJ, Khan MAF, Merkus D, Liu Z, Voors AA, Asselbergs FW, et al. Serially measured circulating microRNAs and adverse clinical outcomes in patients with acute heart failure. Eur J Heart Fail. 2018;20:89–96. doi: 10.1002/ejhf.950
    1. Wu T, Chen Y, Du Y, Tao J, Li W, Zhou Z, Yang Z. Circulating exosomal miR‐92b‐5p is a promising diagnostic biomarker of heart failure with reduced ejection fraction patients hospitalized for acute heart failure. J Thorac Dis. 2018;10:6211–6220. doi: 10.21037/jtd.2018.10.52
    1. Li G, Song Y, Li YD, Jie LJ, Wu WY, Li JZ, Zhang Q, Wang Y. Circulating miRNA‐302 family members as potential biomarkers for the diagnosis of acute heart failure. Biomark Med. 2018;12:871–880. doi: 10.2217/bmm-2018-0132
    1. Corsten MF, Dennert R, Jochems S, Kuznetsova T, Devaux Y, Hofstra L, Wagner DR, Staessen JA, Heymans S, Schroen B. Circulating microRNA‐208b and microRNA‐499 reflect myocardial damage in cardiovascular disease. Circ Cardiovasc Genet. 2010;3:499–506. doi: 10.1161/CIRCGENETICS.110.957415
    1. Danielson LS, Park DS, Rotllan N, Chamorro‐Jorganes A, Guijarro MV, Fernandez‐Hernando C, Fishman GI, Phoon CK, Hernando E. Cardiovascular dysregulation of miR‐17‐92 causes a lethal hypertrophic cardiomyopathy and arrhythmogenesis. FASEB J. 2013;27:1460–1467. doi: 10.1096/fj.12-221994
    1. Zou M, Wang F, Gao R, Wu J, Ou Y, Chen X, Wang T, Zhou X, Zhu W, Li P, et al. Autophagy inhibition of hsa‐miR‐19a‐3p/19b‐3p by targeting TGF‐beta R II during TGF‐beta1‐induced fibrogenesis in human cardiac fibroblasts. Sci Rep. 2016;6:24747. doi: 10.1038/srep24747
    1. Zhong C, Wang K, Liu Y, Lv D, Zheng BO, Zhou Q, Sun QI, Chen P, Ding S, Xu Y, et al. miR‐19b controls cardiac fibroblast proliferation and migration. J Cell Mol Med. 2016;20:1191–1197. doi: 10.1111/jcmm.12858
    1. Bayes‐Genis A, de Antonio M, Vila J, Penafiel J, Galan A, Barallat J, Zamora E, Urrutia A, Lupon J. Head‐to‐head comparison of 2 myocardial fibrosis biomarkers for long‐term heart failure risk stratification: ST2 versus galectin‐3. J Am Coll Cardiol. 2014;63:158–166. doi: 10.1016/j.jacc.2013.07.087
    1. Sygitowicz G, Tomaniak M, Filipiak KJ, Koltowski L, Sitkiewicz D. Galectin‐3 in patients with acute heart failure: preliminary report on first polish experience. Adv Clin Exp Med. 2016;25:617–623. doi: 10.17219/acem/60527
    1. Fang L, Ellims AH, Moore XL, White DA, Taylor AJ, Chin‐Dusting J, Dart AM. Circulating microRNAs as biomarkers for diffuse myocardial fibrosis in patients with hypertrophic cardiomyopathy. J Transl Med. 2015;13:314. doi: 10.1186/s12967-015-0672-0
    1. Gawor M, Spiewak M, Kubik A, Wrobel A, Lutynska A, Marczak M, Grzybowski J. Circulating biomarkers of hypertrophy and fibrosis in patients with hypertrophic cardiomyopathy assessed by cardiac magnetic resonance. Biomarkers. 2018;23:676–682. doi: 10.1080/1354750X.2018.1474261
    1. Copier CU, Leon L, Fernandez M, Contador D, Calligaris SD. Circulating miR‐19b and miR‐181b are potential biomarkers for diabetic cardiomyopathy. Sci Rep. 2017;7:13514.
    1. Wang WB, Li HP, Yan J, Zhuang F, Bao M, Liu JT, Qi YX, Han Y. CTGF regulates cyclic stretch‐induced vascular smooth muscle cell proliferation via microRNA‐19b‐3p. Exp Cell Res. 2019;376:77–85.
    1. Mehta JL, Mercanti F, Stone A, Wang X, Ding Z, Romeo F, Khaidakov M. Gene and microRNA transcriptional signatures of angiotensin II in endothelial cells. J Cardiovasc Pharmacol. 2015;65:123–129. doi: 10.1097/FJC.0000000000000118
    1. Chen W, Zhou ZQ, Ren YQ, Zhang L, Sun LN, Man YL, Wang ZK. Effects of long non‐coding RNA LINC00667 on renal tubular epithelial cell proliferation, apoptosis and renal fibrosis via the miR‐19b‐3p/LINC00667/CTGF signaling pathway in chronic renal failure. Cell Signal. 2019;54:102–114. doi: 10.1016/j.cellsig.2018.10.016

Source: PubMed

3
Prenumerera