Caloric restriction and its mimetics

Shin-Hae Lee, Kyung-Jin Min, Shin-Hae Lee, Kyung-Jin Min

Abstract

Caloric restriction is the most reliable intervention to prevent age-related disorders and extend lifespan. The reduction of calories by 10-30% compared to an ad libitum diet is known to extend the longevity of various species from yeast to rodents. The underlying mechanisms by which the benefits of caloric restriction occur have not yet been clearly defined. However, many studies are being conducted in an attempt to elucidate these mechanisms, and there are indications that the benefits of caloric restriction are related to alteration of the metabolic rate and the accumulation of reactive oxygen species. During molecular signaling, insulin/insulin-like growth factor signaling, target of rapamycin pathway, adenosine monophosphate activated protein kinase signaling, and Sirtuin are focused as underlying pathways that mediate the benefits of caloric restriction. Here, we will review the current status of caloric restriction.

References

    1. Fontana L., Partridge L., Longo V. D. Extending healthy life span--from yeast to humans. Science. (2010);328:321–326. doi: 10.1126/science.1172539.
    1. Masoro E. J. Overview of caloric restriction and ageing. Mech. Ageing Dev. (2005);126:913–922. doi: 10.1016/j.mad.2005.03.012.
    1. Speakman J. R., Mitchell S. E. Caloric restriction. Mol. Aspects Med. (2011);32:159–221. doi: 10.1016/j.mam.2011.07.001.
    1. Fontana L., Weiss E. P., Villareal D. T., Klein S., Holloszy J. O. Long-term effects of calorie or protein restriction on serum IGF-1 and IGFBP-3 concentration in humans. Aging Cell. (2008);7:681–687. doi: 10.1111/j.1474-9726.2008.00417.x.
    1. Orentreich N., Matias J. R., DeFelice A., Zimmerman J. A. Low methionine ingestion by rats extends life span. J. Nutr. (1993);123:269–274.
    1. Ooka H., Segall P. E., Timiras P. S. Histology and survival in age-delayed low-tryptophan-fed rats. Mech. Ageing Dev. (1988);43:79–98. doi: 10.1016/0047-6374(88)90099-1.
    1. Osborne T. B., Mendel L. B., Ferry E. L. The effect of retardation of growth upon the breeding period and duration of life of rats. Science. (1917);45:294–295. doi: 10.1126/science.45.1160.294.
    1. Robertson T. B., Ray L. A. Experimental studies on growth: XV. On the growth of relatively long lived compared with that of relatively short lived animals. J. Biol. Chem. (1920);42:71–107.
    1. McCay C. M., Crowell M. F., Maynard L. A. The effect of retarded growth upon the length of life span and upon the ultimate body size. 1935. Nutrition. (1989);5:155–171.
    1. Weindruch R., Walford R. L., Fligiel S., Guthrie D. The retardation of aging in mice by dietary restriction: longevity, cancer, immunity and lifetime energy intake. J. Nutr. (1986);116:641–654.
    1. Fabrizio P., Longo V. D. The chronological life span of Saccharomyces cerevisiae. Aging Cell. (2003);2:73–81. doi: 10.1046/j.1474-9728.2003.00033.x.
    1. Lin S. J., Defossez P. A., Guarente L. Requirement of NAD and SIR2 for life-span extension by calorie restriction in Saccharomyces cerevisiae. Science. (2000);289:2126–2128. doi: 10.1126/science.289.5487.2126.
    1. Wei M., Fabrizio P., Hu J., Ge H., Cheng C., Li L., Longo V. D. Life span extension by calorie restriction depends on Rim15 and transcription factors downstream of Ras/PKA, Tor, and Sch9. PLoS Genet. (2008);4:e13. doi: 10.1371/journal.pgen.0040013.
    1. Houthoofd K., Braeckman B. P., Lenaerts I., Brys K., De Vreese A., Van Eygen S., Vanfleteren J. R. Axenic growth up-regulates mass-specific metabolic rate, stress resistance, and extends life span in Caenorhabditis elegans. Exp. Gerontol. (2002);37:1371–1378. doi: 10.1016/S0531-5565(02)00173-0.
    1. Mair W., Piper M. D., Partridge L. Calories do not explain extension of life span by dietary restriction in Drosophila. PLoS Biol. (2005);3:e223. doi: 10.1371/journal.pbio.0030223.
    1. Simpson S. J., Raubenheimer D. Macronutrient balance and lifespan. Aging (Albany NY) (2009);1:875–880.
    1. McCay C. M., Crowell M. F., Maynard L. A. The effect of retarded growth upon the length of life span and upon the ultimate body size. J. Nutr. (1935);10:63–79.
    1. Varady K. A., Hellerstein M. K. Alternate-day fasting and chronic disease prevention: a review of human and animal trials. Am. J. Clin. Nutr. (2007);86:7–13.
    1. Singh R., Lakhanpal D., Kumar S., Sharma S., Kataria H., Kaur M., Kaur G. Late-onset intermittent fasting dietary restriction as a potential intervention to retard age-associated brain function impairments in male rats. Age (Dordr) (2012);34:917–933. doi: 10.1007/s11357-011-9289-2.
    1. Bodkin N. L., Alexander T. M., Ortmeyer H. K., Johnson E., Hansen B. C. Mortality and morbidity in laboratory-maintained Rhesus monkeys and effects of long-term dietary restriction. J. Gerontol. A. Biol. Sci. Med. Sci. (2003);58:212–219. doi: 10.1093/gerona/58.3.B212.
    1. Bodkin N. L., Ortmeyer H. K., Hansen B. C. Long-term dietary restriction in older-aged rhesus monkeys: effects on insulin resistance. J. Gerontol. A. Biol. Sci. Med. Sci. (1995);50:B142–147. doi: 10.1093/gerona/50A.3.B142.
    1. Colman R. J., Anderson R. M., Johnson S. C., Kastman E. K., Kosmatka K. J., Beasley T. M., Allison D. B., Cruzen C., Simmons H. A., Kemnitz J. W., Weindruch R. Caloric restriction delays disease onset and mortality in rhesus monkeys. Science. (2009);325:201–204. doi: 10.1126/science.1173635.
    1. Mattison J. A., Roth G. S., Beasley T. M., Tilmont E. M., Handy A. M., Herbert R. L., Longo D. L., Allison D. B., Young J. E., Bryant M., Barnard D., Ward W. F., Qi W., Ingram D. K., de Cabo R. Impact of caloric restriction on health and survival in rhesus monkeys from the NIA study. Nature. (2012);489:318–321. doi: 10.1038/nature11432.
    1. Hallak M. H., Nomani M. Z. Body weight loss and changes in blood lipid levels in normal men on hypocaloric diets during Ramadan fasting. Am. J. Clin. Nutr. (1988);48:1197–1210.
    1. Maislos M., Khamaysi N., Assali A., Abou-Rabiah Y., Zvili I., Shany S. Marked increase in plasma high-density-lipoprotein cholesterol after prolonged fasting during Ramadan. Am. J. Clin. Nutr. (1993);57:640–642.
    1. Rickman A. D., Williamson D. A., Martin C. K., Gilhooly C. H., Stein R. I., Bales C. W., Roberts S., Das S. K. The CALERIE Study: design and methods of an innovative 25% caloric restriction intervention. Contemp. Clin. Trials. (2011);32:874–881. doi: 10.1016/j.cct.2011.07.002.
    1. Meydani M., Das S., Band M., Epstein S., Roberts S. The effect of caloric restriction and glycemic load on measures of oxidative stress and antioxidants in humans: results from the CALERIE Trial of Human Caloric Restriction. J. Nutr. Health. Aging. (2011);15:456–460. doi: 10.1007/s12603-011-0002-z.
    1. Martin C. K., Das S. K., Lindblad L., Racette S. B., McCrory M. A., Weiss E. P., Delany J. P., Kraus W. E. Effect of calorie restriction on the free-living physical activity levels of nonobese humans: results of three randomized trials. J. Appl. Physiol. (2011);110:956–963. doi: 10.1152/japplphysiol.00846.2009.
    1. Villareal D. T., Fontana L., Weiss E. P., Racette S. B., Steger-May K., Schechtman K. B., Klein S., Holloszy J. O. Bone mineral density response to caloric restriction- induced weight loss or exercise-induced weight loss: a randomized controlled trial. Arch. Intern. Med. (2006);166:2502–2510. doi: 10.1001/archinte.166.22.2502.
    1. Weiss E. P., Racette S. B., Villareal D. T., Fontana L., Steger-May K., Schechtman K. B., Klein S., Ehsani A. A., Holloszy J. O. Lower extremity muscle size and strength and aerobic capacity decrease with caloric restriction but not with exercise-induced weight loss. J. Appl. Physiol. (2007);102:634–640. doi: 10.1152/japplphysiol.00853.2006.
    1. Pearl R., Winsor A. A., Miner J. R. The growth of seedlings of the canteloup, cucumis melo, in the absence of exogenous food and light. Proc. Natl. Acad. Sci. U.S.A. (1928);14:1–4. doi: 10.1073/pnas.14.1.1.
    1. Hayflick L. The not-so-close relationship between biological aging and age-associated pathologies in humans. J. Gerontol. A. Biol. Sci. Med. Sci. (2004);59:B547–550. doi: 10.1093/gerona/59.6.B547.
    1. Merry B. J. Molecular mechanisms linking calorie restriction and longevity. Int. J. Biochem. Cell Biol. (2002);34:1340–1354. doi: 10.1016/S1357-2725(02)00038-9.
    1. Van Remmen H., Ikeno Y., Hamilton M., Pahlavani M., Wolf N., Thorpe S. R., Alderson N. L., Baynes J. W., Epstein C. J., Huang T. T., Nelson J., Strong R., Richardson A. Life-long reduction in MnSOD activity results in increased DNA damage and higher incidence of cancer but does not accelerate aging. Physiol. Genomics. (2003);16:29–37. doi: 10.1152/physiolgenomics.00122.2003.
    1. Miwa S., Riyahi K., Partridge L., Brand M. D. Lack of correlation between mitochondrial reactive oxygen species production and life span in Drosophila. Ann. N. Y. Acad. Sci. (2004);1019:388–391. doi: 10.1196/annals.1297.069.
    1. Tabarean I., Morrison B., Marcondes M. C., Bartfai T., Conti B. Hypothalamic and dietary control of temperature- mediated longevity. Ageing Res. Rev. (2010);9:41–50. doi: 10.1016/j.arr.2009.07.004.
    1. Salih D. A., Brunet A. FoxO transcription factors in the maintenance of cellular homeostasis during aging. Curr. Opin. Cell Biol. (2008);20:126–136. doi: 10.1016/j.ceb.2008.02.005.
    1. Kenyon C., Chang J., Gensch E., Rudner A., Tabtiang R. A C. elegans mutant that lives twice as long as wild type. Nature. (1993);366:461–464. doi: 10.1038/366461a0.
    1. Min K. J., Yamamoto R., Buch S., Pankratz M., Tatar M. Drosophila lifespan control by dietary restriction independent of insulin-like signaling. Aging Cell. (2008);7:199–206. doi: 10.1111/j.1474-9726.2008.00373.x.
    1. McKee Alderman J., DePetrillo M. A., Gluesenkamp A. M., Hartley A. C., Verhoff S. V., Zavodni K. L., Combs T. P. Calorie restriction and dwarf mice in gerontological research. Gerontology. (2010);56:404–409. doi: 10.1159/000235720.
    1. Jia K., Chen D., Riddle D. L. The TOR pathway interacts with the insulin signaling pathway to regulate C. elegans larval development, metabolism and life span. Development. (2004);131:3897–3906. doi: 10.1242/dev.01255.
    1. Kapahi P., Zid B. M., Harper T., Koslover D., Sapin V., Benzer S. Regulation of lifespan in Drosophila by modulation of genes in the TOR signaling pathway. Curr. Biol. (2004);14:885–890. doi: 10.1016/j.cub.2004.03.059.
    1. Dogan S., Johannsen A. C., Grande J. P., Cleary M. P. Effects of intermittent and chronic calorie restriction on mammalian target of rapamycin (mTOR) and IGF-I signaling pathways in mammary fat pad tissues and mammary tumors. Nutr. Cancer. (2011);63:389–401. doi: 10.1080/01635581.2011.535968.
    1. Sharma N., Castorena C. M., Cartee G. D. Tissue-specific responses of IGF-1/insulin and mTOR signaling in calorie restricted rats. PLoS One. (2012);7:e38835. doi: 10.1371/journal.pone.0038835.
    1. Schulz T. J., Zarse K., Voigt A., Urban N., Birringer M., Ristow M. Glucose restriction extends Caenorhabditis elegans life span by inducing mitochondrial respiration and increasing oxidative stress. Cell Metab. (2007);6:280–293. doi: 10.1016/j.cmet.2007.08.011.
    1. Greer E. L., Dowlatshahi D., Banko M. R., Villen J., Hoang K., Blanchard D., Gygi S. P., Brunet A. An AMPK-FOXO pathway mediates longevity induced by a novel method of dietary restriction in C. elegans. Curr. Biol. (2007);17:1646–1656. doi: 10.1016/j.cub.2007.08.047.
    1. Funakoshi M., Tsuda M., Muramatsu K., Hatsuda H., Morishita S., Aigaki T. A gain-of-function screen identifies wdb and lkb1 as lifespan-extending genes in Drosophila. Biochem. Biophys. Res. Commun. (2011);405:667–672. doi: 10.1016/j.bbrc.2011.01.090.
    1. Stenesen D., Suh J. M., Seo J., Yu K., Lee K. S., Kim J. S., Min K. J., Graff J. M. Adenosine nucleotide biosynthesis and AMPK regulate adult life span and mediate the longevity benefit of caloric restriction in flies. Cell Metab. (2013);17:101–112. doi: 10.1016/j.cmet.2012.12.006.
    1. Canto C., Auwerx J. Calorie restriction: is AMPK a key sensor and effector? Physiology (Bethesda) (2011);26:214–224. doi: 10.1152/physiol.00010.2011.
    1. Nisoli E., Tonello C., Cardile A., Cozzi V., Bracale R., Tedesco L., Falcone S., Valerio A., Cantoni O., Clementi E., Moncada S., Carruba M. O. Calorie restriction promotes mitochondrial biogenesis by inducing the expression of eNOS. Science. (2005);310:314–317. doi: 10.1126/science.1117728.
    1. Rogina B., Helfand S. L. Sir2 mediates longevity in the fly through a pathway related to calorie restriction. Proc. Natl. Acad. Sci. U.S.A. (2004);101:15998–16003. doi: 10.1073/pnas.0404184101.
    1. Tissenbaum H. A., Guarente L. Increased dosage of a sir-2 gene extends lifespan in Caenorhabditis elegans. Nature. (2001);410:227–230. doi: 10.1038/35065638.
    1. Bordone L., Cohen D., Robinson A., Motta M. C., van Veen E., Czopik A., Steele A. D., Crowe H., Marmor S., Luo J., Gu W., Guarente L. SIRT1 transgenic mice show phenotypes resembling calorie restriction. Aging Cell. (2007);6:759–767. doi: 10.1111/j.1474-9726.2007.00335.x.
    1. Boily G., Seifert E. L., Bevilacqua L., He X. H., Sabourin G., Estey C., Moffat C., Crawford S., Saliba S., Jardine K., Xuan J., Evans M., Harper M. E., McBurney M. W. SirT1 regulates energy metabolism and response to caloric restriction in mice. PLoS One. (2008);3:e1759. doi: 10.1371/journal.pone.0001759.
    1. Kaeberlein M., Powers R. W. 3rd, Steffen K. K., Westman E. A., Hu D., Dang N., Kerr E. O., Kirkland K. T., Fields S., Kennedy B. K. Regulation of yeast replicative life span by TOR and Sch9 in response to nutrients. Science. (2005);310:1193–1196. doi: 10.1126/science.1115535.
    1. Howitz K. T., Bitterman K. J., Cohen H. Y., Lamming D. W., Lavu S., Wood J. G., Zipkin R. E., Chung P., Kisielewski A., Zhang L. L., Scherer B., Sinclair D. A. Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan. Nature. (2003);425:191–196. doi: 10.1038/nature01960.
    1. Wood J. G., Rogina B., Lavu S., Howitz K., Helfand S. L., Tatar M., Sinclair D. Sirtuin activators mimic caloric restriction and delay ageing in metazoans. Nature. (2004);430:686–689. doi: 10.1038/nature02789.
    1. Baur J. A., Pearson K. J., Price N. L., Jamieson H. A., Lerin C., Kalra A., Prabhu V. V., Allard J. S., Lopez-Lluch G., Lewis K., Pistell P. J., Poosala S., Becker K. G., Boss O., Gwinn D., Wang M., Ramaswamy S., Fishbein K. W., Spencer R. G., Lakatta E. G., Le Couteur D., Shaw R. J., Navas P., Puigserver P., Ingram D. K., de Cabo R., Sinclair D. A. Resveratrol improves health and survival of mice on a high-calorie diet. Nature. (2006);444:337–342. doi: 10.1038/nature05354.
    1. Pearson K. J., Baur J. A., Lewis K. N., Peshkin L., Price N. L., Labinskyy N., Swindell W. R., Kamara D., Minor R. K., Perez E., Jamieson H. A., Zhang Y., Dunn S. R., Sharma K., Pleshko N., Woollett L. A., Csiszar A., Ikeno Y., Le Couteur D., Elliott P. J., Becker K. G., Navas P., Ingram D. K., Wolf N. S., Ungvari Z., Sinclair D. A., de Cabo R. Resveratrol delays age-related deterioration and mimics transcriptional aspects of dietary restriction without extending life span. Cell Metab. (2008);8:157–168. doi: 10.1016/j.cmet.2008.06.011.
    1. Powers R. W. 3rd, Kaeberlein M., Caldwell S. D., Kennedy B. K., Fields S. Extension of chronological life span in yeast by decreased TOR pathway signaling. Genes Dev. (2006);20:174–184. doi: 10.1101/gad.1381406.
    1. Harrison D. E., Strong R., Sharp Z. D., Nelson J. F., Astle C. M., Flurkey K., Nadon N. L., Wilkinson J. E., Frenkel K., Carter C. S., Pahor M., Javors M. A., Fernandez E., Miller R. A. Rapamycin fed late in life extends lifespan in genetically heterogeneous mice. Nature. (2009);460:392–395.
    1. Blattler S. M., Cunningham J. T., Verdeguer F., Chim H., Haas W., Liu H., Romanino K., Ruegg M. A., Gygi S. P., Shi Y., Puigserver P. Yin Yang 1 deficiency in skeletal muscle protects against rapamycin-induced diabetic-like symptoms through activation of insulin/ IGF signaling. Cell Metab. (2012);15:505–517. doi: 10.1016/j.cmet.2012.03.008.
    1. Dhahbi J. M., Mote P. L., Fahy G. M., Spindler S. R. Identification of potential caloric restriction mimetics by microarray profiling. Physiol. Genomics. (2005);23:343–350. doi: 10.1152/physiolgenomics.00069.2005.
    1. Onken B., Driscoll M. Metformin induces a dietary restriction-like state and the oxidative stress response to extend C. elegans Healthspan via AMPK, LKB1, and SKN-1. PLoS One. (2010);5:e8758. doi: 10.1371/journal.pone.0008758.
    1. Slack C., Foley A., Partridge L. Activation of AMPK by the putative dietary restriction mimetic metformin is insufficient to extend lifespan in Drosophila. PLoS One. (2012);7:e47699. doi: 10.1371/journal.pone.0047699.
    1. Smith D. L. Jr., Nagy T. R., Allison D. B. Calorie restriction: what recent results suggest for the future of ageing research. Eur. J. Clin. Invest. (2010);40:440–450. doi: 10.1111/j.1365-2362.2010.02276.x.

Source: PubMed

3
Prenumerera