Dietary polyphenols and obesity

Mohsen Meydani, Syeda T Hasan, Mohsen Meydani, Syeda T Hasan

Abstract

The prevalence of overweight and obesity and their associated metabolic disorders are considered a major threat to the public's health. While several diet and exercise programs are available for weight loss and prevention of weight regain, progress is often slow and disappointing. Recently, natural bioactive phytochemicals present in foods have been discovered for their potential health benefit effects on the prevention of chronic disorders such as cancer, cardiovascular disease, inflammatory and metabolic diseases including obesity. Polyphenols are a class of naturally-occurring phytochemicals, of which some such as catechins, anthocynines, resveratrol and curcumin have been shown to modulate physiological and molecular pathways that are involved in energy metabolism, adiposity, and obesity. The potential in vivo, beneficial effects of these polyphenols on adiposity and obesity as complementary agents in the up-regulation of energy expenditure have emerged by investigating these compounds in cell cultures, animal models of obesity and in some human clinical and epidemiological studies. In this brief review, the efficacy of the above-named polyphenols and their potential efficacy to modulate obesity and some associated disorders are discussed.

Keywords: catechins; curcumin; green tea; obesity; polyphenol; resveratrol.

References

    1. Mokdad A.H., Bowman B.A., Ford E.S., Vinicor F., Marks J.S., Koplan J.P. The continuing epidemics of obesity and diabetes in the United States. JAMA. 2001;286:1195–1200.
    1. Ogden C.L., Carroll M.D., Curtin L.R., McDowell M.A., Tabak C.J., Flegal K.M. Prevalence of overweight and obesity in the United States, 1999-2004. JAMA. 2006;295:1549–1555.
    1. Food, Nutrition, Physical Activity, and Prevention of Cancer: a global Perspective. World Cancer Research Fund, A.I.F.C.R.; Washington, DC, USA: 2007.
    1. Calle E.E., Rodriguez C., Walker-Thurmond K., Thun M.J. Overweight, obesity, and mortality from cancer in a prospectively studied cohort of U.S. adults. N. Engl. J. Med. 2003;348:1625–1638. doi: 10.1056/NEJMoa021423.
    1. Bronson R., Birt D., Meydani S.N. Biomarkers as early predictors of long-term health status and human immune function. Nutr. Rev. 1999;57:S7–S12.
    1. Kannel W.B., Cupples L.A., Ramaswami R., Stokes J., 3rd, Kreger B.E., Higgins M. Regional obesity and risk of cardiovascular disease; the Framingham Study. J. Clin. Epidemiol. 1991;44:183–190. doi: 10.1016/0895-4356(91)90265-B.
    1. Kenchaiah S., Evans J.C., Levy D., Wilson P.W., Benjamin E.J., Larson M.G., Kannel W.B., Vasan R.S. Obesity and the risk of heart failure. N. Engl. J. Med. 2002;347:305–313.
    1. Field A.E., Coakley E.H., Must A., Spadano J.L., Laird N., Dietz W.H., Rimm E., Colditz G.A. Impact of overweight on the risk of developing common chronic diseases during a 10-year period. Arch. Intern. Med. 2001;161:1581–1586.
    1. Thompson D., Wolf A.M. The medical-care cost burden of obesity. Obes Rev. 2001;2:189–197.
    1. Weiss E.C., Galuska D.A., Kettel Khan L., Gillespie C., Serdula M.K. Weight regain in U.S. adults who experienced substantial weight loss, 1999-2002. Am. J. Prev. Med. 2007;33:34–40. doi: 10.1016/j.amepre.2007.02.040.
    1. Hursel R., Westerterp-Plantenga M.S. Thermogenic ingredients and body weight regulation. Int. J. Obes. (Lond) 34:659–669.
    1. Lin J.K., Lin-Shiau S.Y. Mechanisms of hypolipidemic and anti-obesity effects of tea and tea polyphenols. Mol. Nutr. Food Res. 2006;50:211–217.
    1. Lin J., Della-Fera M.A., Baile C.A. Green tea polyphenol epigallocatechin gallate inhibits adipogenesis and induces apoptosis in 3T3-L1 adipocytes. Obes. Res. 2005;13:982–990.
    1. Carling D. AMP-activated protein kinase: balancing the scales. Biochimie. 2005;87:87–91.
    1. Ruderman N.B., Saha A.K., Vavvas D., Witters L.A. Malonyl-CoA, fuel sensing, and insulin resistance. Am. J. Physiol. 1999;276:E1–E18.
    1. Ching Y.P., Davies S.P., Hardie D.G. Analysis of the specificity of the AMP-activated protein kinase by site-directed mutagenesis of bacterially expressed 3-hydroxy 3-methylglutaryl-CoA reductase, using a single primer variant of the unique-site-elimination method. Eur. J. Biochem. 1996;237:800–808.
    1. Murase T., Misawa K., Haramizu S., Hase T. Catechin-induced activation of the LKB1/AMP-activated protein kinase pathway. Biochem. Pharmacol. 2009;78:78–84.
    1. Nakai M., Fukui Y., Asami S., Toyoda-Ono Y., Iwashita T., Shibata H., Mitsunaga T., Hashimoto F., Kiso Y. Inhibitory effects of oolong tea polyphenols on pancreatic lipase in vitro. J. Agric. Food Chem. 2005;53:4593–4598.
    1. Ikeda I., Tsuda K., Suzuki Y., Kobayashi M., Unno T., Tomoyori H., Goto H., Kawata Y., Imaizumi K., Nozawa A., Kakuda T. Tea catechins with a galloyl moiety suppress postprandial hypertriacylglycerolemia by delaying lymphatic transport of dietary fat in rats. J. Nutr. 2005;135:155–159.
    1. Klaus S., Pultz S., Thone-Reineke C., Wolfram S. Epigallocatechin gallate attenuates diet-induced obesity in mice by decreasing energy absorption and increasing fat oxidation. Int. J. Obes. (Lond) 2005;29:615–623.
    1. Bruno R.S., Dugan C.E., Smyth J.A., DiNatale D.A., Koo S.I. Green tea extract protects leptin-deficient, spontaneously obese mice from hepatic steatosis and injury. J. Nutr. 2008;138:323–331.
    1. Wu C.H., Lu F.H., Chang C.S., Chang T.C., Wang R.H., Chang C.J. Relationship among habitual tea consumption, percent body fat, and body fat distribution. Obes. Res. 2003;11:1088–1095.
    1. Hughes L.A., Arts I.C., Ambergen T., Brants H.A., Dagnelie P.C., Goldbohm R.A., van den Brandt P.A., Weijenberg M.P. Higher dietary flavone, flavonol, and catechin intakes are associated with less of an increase in BMI over time in women: a longitudinal analysis from the Netherlands Cohort Study. Am. J. Clin. Nutr. 2008;88:1341–1352.
    1. Nagao T., Komine Y., Soga S., Meguro S., Hase T., Tanaka Y., Tokimitsu I. Ingestion of a tea rich in catechins leads to a reduction in body fat and malondialdehyde-modified LDL in men. Am. J. Clin. Nutr. 2005;81:122–129.
    1. Nagao T., Meguro S., Hase T., Otsuka K., Komikado M., Tokimitsu I., Yamamoto T., Yamamoto K. A catechin-rich beverage improves obesity and blood glucose control in patients with type 2 diabetes. Obesity (Silver Spring) 2009;17:310–317.
    1. Nagao T., Hase T., Tokimitsu I. A green tea extract high in catechins reduces body fat and cardiovascular risks in humans. Obesity (Silver Spring) 2007;15:1473–1483. doi: 10.1038/oby.2007.176.
    1. Venables M.C., Hulston C.J., Cox H.R., Jeukendrup A.E. Green tea extract ingestion, fat oxidation, and glucose tolerance in healthy humans. Am. J. Clin. Nutr. 2008;87:778–784.
    1. Boschmann M., Thielecke F. The effects of epigallocatechin-3-gallate on thermogenesis and fat oxidation in obese men: a pilot study. J. Am. Coll. Nutr. 2007;26:389S–395S.
    1. Diepvens K., Kovacs E.M., Nijs I.M., Vogels N., Westerterp-Plantenga M.S. Effect of green tea on resting energy expenditure and substrate oxidation during weight loss in overweight females. Br. J. Nutr. 2005;94:1026–1034.
    1. Mazzanti G., Menniti-Ippolito F., Moro P.A., Cassetti F., Raschetti R., Santuccio C., Mastrangelo S. Hepatotoxicity from green tea: a review of the literature and two unpublished cases. Eur. J. Clin. Pharmacol. 2009;65:331–341.
    1. Lambert J.D., Kennett M.J., Sang S., Reuhl K.R., Ju J., Yang C.S. Hepatotoxicity of high oral dose (-)-epigallocatechin-3-gallate in mice. Food Chem. Toxicol. 2009;48:409–416.
    1. Hosoda K., Wang M.F., Liao M.L., Chuang C.K., Iha M., Clevidence B., Yamamoto S. Antihyperglycemic effect of oolong tea in type 2 diabetes. Diabetes Care. 2003;26:1714–1718.
    1. Ashida H., Furuyashiki T., Nagayasu H., Bessho H., Sakakibara H., Hashimoto T., Kanazawa K. Anti-obesity actions of green tea: possible involvements in modulation of the glucose uptake system and suppression of the adipogenesis-related transcription factors. Biofactors. 2004;22:135–140.
    1. Sohle J., Knott A., Holtzmann U., Siegner R., Gronniger E., Schepky A., Gallinat S., Wenck H., Stab F., Winnefeld M. White Tea extract induces lipolytic activity and inhibits adipogenesis in human subcutaneous (pre)-adipocytes. Nutr. Metab. (Lond) 2009;6:20. doi: 10.1186/1743-7075-6-20.
    1. Rosen E.D., Walkey C.J., Puigserver P., Spiegelman B.M. Transcriptional regulation of adipogenesis. Genes Dev. 2000;14:1293–1307.
    1. Gregoire F.M., Smas C.M., Sul H.S. Understanding adipocyte differentiation. Physiol. Rev. 1998;78:783–809.
    1. Tontonoz P., Spiegelman B.M. Fat and beyond: the diverse biology of PPARgamma. Annu. Rev. Biochem. 2008;77:289–312.
    1. Michan S., Sinclair D. Sirtuins in mammals: insights into their biological function. Biochem. J. 2007;404:1–13.
    1. Picard F., Kurtev M., Chung N., Topark-Ngarm A., Senawong T., Machado De Oliveira R., Leid M., McBurney M.W., Guarente L. Sirt1 promotes fat mobilization in white adipocytes by repressing PPAR-gamma. Nature. 2004;429:771–776.
    1. Agouni A., Lagrue-Lak-Hal A.H., Mostefai H.A., Tesse A., Mulder P., Rouet P., Desmoulin F., Heymes C., Martinez M.C., Andriantsitohaina R. Red wine polyphenols prevent metabolic and cardiovascular alterations associated with obesity in Zucker fatty rats (Fa/Fa) PLoS One. 2009;4:e5557.
    1. DeFuria J., Bennett G., Strissel K.J., Perfield J.W., 2nd, Milbury P.E., Greenberg A.S., Obin M.S. Dietary blueberry attenuates whole-body insulin resistance in high fat-fed mice by reducing adipocyte death and its inflammatory sequelae. J. Nutr. 2009;139:1510–1516. doi: 10.3945/jn.109.105155.
    1. Strissel K.J., Stancheva Z., Miyoshi H., Perfield J.W., 2nd, DeFuria J., Jick Z., Greenberg A.S., Obin M.S. Adipocyte death, adipose tissue remodeling, and obesity complications. Diabetes. 2007;56:2910–2918.
    1. Joseph J.A., Shukitt-Hale B., Denisova N.A., Bielinski D., Martin A., McEwen J.J., Bickford P.C. Reversals of age-related declines in neuronal signal transduction, cognitive, and motor behavioral deficits with blueberries, spinach, or strawberry dietary supplementation. J. Neurosci. 1999;19:8114–8121.
    1. Youdim K.A., Shukitt-Hale B., MacKinnon S., Kalt W., Joseph J.A. Polyphenolics enhance red blood cell resistance to oxidative stress: in vitro and in vivo. Biochim. Biophys. Acta. 2000;1523:117–122.
    1. Lau F.C., Bielinski D.F., Joseph J.A. Inhibitory effects of blueberry extract on the production of inflammatory mediators in lipopolysaccharide-activated BV2 microglia. J. Neurosci. Res. 2007;85:1010–1017.
    1. Cinti S., Mitchell G., Barbatelli G., Murano I., Ceresi E., Faloia E., Wang S., Fortier M., Greenberg A.S., Obin M.S. Adipocyte death defines macrophage localization and function in adipose tissue of obese mice and humans. J. Lipid Res. 2005;46:2347–2355.
    1. Lumeng C.N., Bodzin J.L., Saltiel A.R. Obesity induces a phenotypic switch in adipose tissue macrophage polarization. J. Clin. Invest. 2007;117:175–184.
    1. Li P., Lu M., Nguyen M.T., Bae E.J., Chapman J., Feng D., Hawkins M., Pessin J.E., Sears D.D., Nguyen A.K., Amidi A., Watkins S.M., Nguyen U., Olefsky J.M. Functional heterogeneity of CD11c-positive adipose tissue macrophages in diet-induced obese mice. J. Biol. Chem. 2010;285:15333–15345.
    1. Zhang Y., Proenca R., Maffei M., Barone M., Leopold L., Friedman J.M. Positional cloning of the mouse obese gene and its human homologue. Nature. 1994;372:425–432.
    1. MacDougald O.A., Hwang C.S., Fan H., Lane M.D. Regulated expression of the obese gene product (leptin) in white adipose tissue and 3T3-L1 adipocytes. Proc. Natl. Acad. Sci. USA. 1995;92:9034–9037.
    1. Wu X., Prior R.L. Systematic identification and characterization of anthocyanins by HPLC-ESI-MS/MS in common foods in the United States: fruits and berries. J. Agric. Food Chem. 2005;53:2589–2599.
    1. Prior R.L., Wu X., Gu L., Hager T.J., Hager A., Howard L.R. Whole berries versus berry anthocyanins: interactions with dietary fat levels in the C57BL/6J mouse model of obesity. J. Agric. Food Chem. 2008;56:647–653.
    1. Prior R.L., Wu X., Gu L., Hager T., Hager A., Wilkes S., Howard L. Purified berry anthocyanins but not whole berries normalize lipid parameters in mice fed an obesogenic high fat diet. Mol. Nutr. Food Res. 2009;53:1406–1418.
    1. Cottart C.H., Nivet-Antoine V., Laguillier-Morizot C., Beaudeux J.L. Resveratrol bioavailability and toxicity in humans. Mol. Nutr. Food Res. 2009;54:7–16.
    1. Burns J., Yokota T., Ashihara H., Lean M.E., Crozier A. Plant foods and herbal sources of resveratrol. J. Agric. Food Chem. 2002;50:3337–3340.
    1. Hung L.M., Chen J.K., Huang S.S., Lee R.S., Su M.J. Cardioprotective effect of resveratrol, a natural antioxidant derived from grapes. Cardiovasc. Res. 2000;47:549–555.
    1. Atten M.J., Godoy-Romero E., Attar B.M., Milson T., Zopel M., Holian O. Resveratrol regulates cellular PKC alpha and delta to inhibit growth and induce apoptosis in gastric cancer cells. Invest. New Drugs. 2005;23:111–119.
    1. van der Spuy W.J., Pretorius E. Is the use of resveratrol in the treatment and prevention of obesity premature? Nutr. Res. Rev. 2009;22:111–117. doi: 10.1017/S0954422409990084.
    1. Zang M., Xu S., Maitland-Toolan K.A., Zuccollo A., Hou X., Jiang B., Wierzbicki M., Verbeuren T.J., Cohen R.A. Polyphenols stimulate AMP-activated protein kinase, lower lipids, and inhibit accelerated atherosclerosis in diabetic LDL receptor-deficient mice. Diabetes. 2006;55:2180–2191. doi: 10.2337/db05-1188.
    1. Ahn J., Cho I., Kim S., Kwon D., Ha T. Dietary resveratrol alters lipid metabolism-related gene expression of mice on an atherogenic diet. J. Hepatol. 2008;49:1019–1028.
    1. Floyd Z.E., Wang Z.Q., Kilroy G., Cefalu W.T. Modulation of peroxisome proliferator-activated receptor gamma stability and transcriptional activity in adipocytes by resveratrol. Metabolism. 2008;57:S32–S38.
    1. Gnoni G.V., Paglialonga G. Resveratrol inhibits fatty acid and triacylglycerol synthesis in rat hepatocytes. Eur. J. Clin. Invest. 2009;39:211–218.
    1. Szkudelska K., Nogowski L., Szkudelski T. Resveratrol, a naturally occurring diphenolic compound, affects lipogenesis, lipolysis and the antilipolytic action of insulin in isolated rat adipocytes. J. Steroid Biochem. Mol. Biol. 2009;113:17–24. doi: 10.1016/j.jsbmb.2008.11.001.
    1. Rayalam S., Yang J.Y., Ambati S., Della-Fera M.A., Baile C.A. Resveratrol induces apoptosis and inhibits adipogenesis in 3T3-L1 adipocytes. Phytother Res. 2008;22:1367–1371.
    1. Park H.J., Yang J.Y., Ambati S., Della-Fera M.A., Hausman D.B., Rayalam S., Baile C.A. Combined effects of genistein, quercetin, and resveratrol in human and 3T3-L1 adipocytes. J. Med. Food. 2008;11:773–783. doi: 10.1089/jmf.2008.0077.
    1. Macarulla M.T., Alberdi G., Gomez S., Tueros I., Bald C., Rodriguez V.M., Martinez J.A., Portillo M.P. Effects of different doses of resveratrol on body fat and serum parameters in rats fed a hypercaloric diet. J. Physiol. Biochem. 2009;65:369–376.
    1. Shang J., Chen L.L., Xiao F.X., Sun H., Ding H.C., Xiao H. Resveratrol improves non-alcoholic fatty liver disease by activating AMP-activated protein kinase. Acta Pharmacol. Sin. 2008;29:698–706.
    1. Rivera L., Moron R., Zarzuelo A., Galisteo M. Long-term resveratrol administration reduces metabolic disturbances and lowers blood pressure in obese Zucker rats. Biochem. Pharmacol. 2009;77:1053–1063.
    1. Lagouge M., Argmann C., Gerhart-Hines Z., Meziane H., Lerin C., Daussin F., Messadeq N., Milne J., Lambert P., Elliott P., Geny B., Laakso M., Puigserver P., Auwerx J. Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1alpha. Cell. 2006;127:1109–1122.
    1. Szkudelska K., Szkudelski T. Resveratrol, obesity and diabetes. Eur. J. Pharmacol. 2010;635:1–8.
    1. Barger J.L., Kayo T., Vann J.M., Arias E.B., Wang J., Hacker T.A., Wang Y., Raederstorff D., Morrow J.D., Leeuwenburgh C., Allison D.B., Saupe K.W., Cartee G.D., Weindruch R., Prolla T.A. A low dose of dietary resveratrol partially mimics caloric restriction and retards aging parameters in mice. PLoS One. 2008;3:e2264.
    1. Bishayee A., Darvesh A.S., Politis T., McGory R. Resveratrol and liver disease: from bench to bedside and community. Liver Int. 2010;([Epub ahead of print])
    1. Crowell J.A., Korytko P.J., Morrissey R.L., Booth T.D., Levine B.S. Resveratrol-associated renal toxicity. Toxicol. Sci. 2004;82:614–619.
    1. Hebbar V., Shen G., Hu R., Kim B.R., Chen C., Korytko P.J., Crowell J.A., Levine B.S., Kong A.N. Toxicogenomics of resveratrol in rat liver. Life Sci. 2005;76:2299–2314.
    1. Wong Y.T., Gruber J., Jenner A.M., Ng M.P., Ruan R., Tay F.E. Elevation of oxidative-damage biomarkers during aging in F2 hybrid mice: protection by chronic oral intake of resveratrol. Free Radic. Biol. Med. 2009;46:799–809.
    1. Sharma R.A., Gescher A.J., Steward W.P. Curcumin: the story so far. Eur. J. Cancer. 2005;41:1955–1968.
    1. Strimpakos A.S., Sharma R.A. Curcumin: preventive and therapeutic properties in laboratory studies and clinical trials. Antioxid Redox Signal. 2008;10:511–545.
    1. Oppenheimer A. Turmeric (curcumin) in biliary diseases. Lancet. 1937;229:619–621.
    1. Rao D.S., Sekhara N.C., Satyanarayana M.N., Srinivasan M. Effect of curcumin on serum and liver cholesterol levels in the rat. J. Nutr. 1970;100:1307–1315.
    1. Srinivasan M.R., Satyanarayana M.N. Effect of capsaicin on skeletal muscle lipoprotein lipase in rats fed high fat diet. Indian J. Exp. Biol. 1989;27:910–912.
    1. Cao Y. Angiogenesis modulates adipogenesis and obesity. J Clin Invest. 2007;117:2362–2368.
    1. Lijnen H.R. Angiogenesis and obesity. Cardiovasc. Res. 2008;78:286–293.
    1. Voros G., Maquoi E., Demeulemeester D., Clerx N., Collen D., Lijnen H.R. Modulation of angiogenesis during adipose tissue development in murine models of obesity. Endocrinology. 2005;146:4545–4554.
    1. Hausman G.J., Richardson R.L. Adipose tissue angiogenesis. J. Anim. Sci. 2004;82:925–934.
    1. Bae M.K., Kim S.H., Jeong J.W., Lee Y.M., Kim H.S., Kim S.R., Yun I., Bae S.K., Kim K.W. Curcumin inhibits hypoxia-induced angiogenesis via down-regulation of HIF-1. Oncol. Rep. 2006;15:1557–1562.
    1. Gururaj A.E., Belakavadi M., Venkatesh D.A., Marme D., Salimath B.P. Molecular mechanisms of anti-angiogenic effect of curcumin. Biochem. Biophys. Res. Commun. 2002;297:934–942.
    1. Rupnick M.A., Panigrahy D., Zhang C.Y., Dallabrida S.M., Lowell B.B., Langer R., Folkman M.J. Adipose tissue mass can be regulated through the vasculature. Proc. Natl. Acad. Sci. U S A. 2002;99:10730–10735.
    1. Tilg H., Moschen A.R. Adipocytokines: mediators linking adipose tissue, inflammation and immunity. Nat. Rev. Immunol. 2006;6:772–783.
    1. Ejaz A., Wu D., Kwan P., Meydani M. Curcumin inhibits adipogenesis in 3T3-L1 adipocytes and angiogenesis and obesity in C57/BL mice. J. Nutr. 2009;139:919–925.
    1. Ruderman N.B., Park H., Kaushik V.K., Dean D., Constant S., Prentki M., Saha A.K. AMPK as a metabolic switch in rat muscle, liver and adipose tissue after exercise. Acta Physiol. Scand. 2003;178:435–442.
    1. Asai A., Miyazawa T. Dietary curcuminoids prevent high-fat diet-induced lipid accumulation in rat liver and epididymal adipose tissue. J. Nutr. 2001;131:2932–2935.
    1. Jang E.M., Choi M.S., Jung U.J., Kim M.J., Kim H.J., Jeon S.M., Shin S.K., Seong C.N., Lee M.K. Beneficial effects of curcumin on hyperlipidemia and insulin resistance in high-fat-fed hamsters. Metabolism. 2008;57:1576–1583.
    1. Kuroda M., Mimaki Y., Nishiyama T., Mae T., Kishida H., Tsukagawa M., Takahashi K., Kawada T., Nakagawa K., Kitahara M. Hypoglycemic effects of turmeric (Curcuma longa L. rhizomes) on genetically diabetic KK-Ay mice. Biol. Pharm. Bull. 2005;28:937–939. doi: 10.1248/bpb.28.937.
    1. Weisberg S.P., Leibel R., Tortoriello D.V. Dietary curcumin significantly improves obesity-associated inflammation and diabetes in mouse models of diabesity. Endocrinology. 2008;149:3549–3558.
    1. Wu Z., Xie Y., Bucher N.L., Farmer S.R. Conditional ectopic expression of C/EBP beta in NIH-3T3 cells induces PPAR gamma and stimulates adipogenesis. Genes Dev. 1995;9:2350–2363.
    1. Gurnell M. Peroxisome proliferator-activated receptor gamma and the regulation of adipocyte function: lessons from human genetic studies. Best Pract. Res. Clin. Endocrinol. Metab. 2005;19:501–523.

Source: PubMed

3
Prenumerera