Rapid turnover of effector-memory CD4(+) T cells in healthy humans

Derek C Macallan, Diana Wallace, Yan Zhang, Catherine De Lara, Andrew T Worth, Hala Ghattas, George E Griffin, Peter C L Beverley, David F Tough, Derek C Macallan, Diana Wallace, Yan Zhang, Catherine De Lara, Andrew T Worth, Hala Ghattas, George E Griffin, Peter C L Beverley, David F Tough

Abstract

Memory T cells can be divided into central-memory (T(CM)) and effector-memory (T(EM)) cells, which differ in their functional properties. Although both subpopulations can persist long term, it is not known whether they are maintained by similar mechanisms. We used in vivo labeling with deuterated glucose to measure the turnover of CD4(+) T cells in healthy humans. The CD45R0(+)CCR7(-) T(EM) subpopulation was shown to have a rapid proliferation rate of 4.7% per day compared with 1.5% per day for CD45R0(+)CCR7(+) T(CM) cells; these values are equivalent to average intermitotic (doubling) times of 15 and 48 d, respectively. In contrast, the CD45RA(+)CCR7(+) naive CD4(+) T cell population was found to be much longer lived, being labeled at a rate of only 0.2% per day (corresponding to an intermitotic time of approximately 1 yr). These data indicate that human CD4(+) T(EM) cells constitute a short-lived cell population that requires continuous replenishment in vivo.

Figures

Figure 1.
Figure 1.
Kinetics of labeling of naive, TCM, TEM, and RA+7− CD4+ T cells after infusion of 2H-glucose. Subjects were infused with 2H-glucose for 24 h starting from time 0, and the proportion of labeled cells (relative to total cells in each subpopulation) at different time points is shown for CD45RA+ (left) and CD45R0+ CD4+ T cells (right). Data for CCR7+ and CCR7− cells are indicated by filled or open symbols, respectively; error bars represent the SD of triplicate GCMS measurements. Lines represent best-fit curves calculated based on the data points and assuming maximal labeling at 24 h.

References

    1. Schluns, K.S., and L. Lefrancois. 2003. Cytokine control of memory T-cell development and survival. Nat. Rev. Immunol. 3:269–279.
    1. Mackay, C.R., W.L. Marston, and L. Dudler. 1990. Naive and memory T cells show distinct pathways of lymphocyte recirculation. J. Exp. Med. 171:801–817.
    1. Michie, C.A., A. McLean, A. Alcock, and P.C.L. Beverley. 1992. Lifespan of human lymphocyte subsets defined by CD45 isoforms. Nature. 360:264–265.
    1. Tough, D.F., and J. Sprent. 1994. Turnover of naive- and memory-phenotype T cells. J. Exp. Med. 179:1127–1135.
    1. Mohri, H., S. Bonhoeffer, S. Monard, A.S. Perelson, and D.D. Ho. 1998. Rapid turnover of T lymphocytes in SIV-infected Rhesus Macaques. Science. 279:1223–1227.
    1. McCune, J.M., M.B. Hanley, D. Cesar, R. Halvorsen, R. Hoh, D. Schmidt, E. Eieder, S. Deeks, S. Siler, and R. Neese. 2000. Factors influencing T-cell turnover in HIV-1-seropositive patients. J. Clin. Invest. 105:R1–R8.
    1. Macallan, D.C., B. Asquith, A.J. Irvine, D.L. Wallace, A. Worth, H. Ghattas, Y. Zhang, G.E. Griffin, D.F. Tough, and P.C. Beverley. 2003. Measurement and modelling of human T cell kinetics. Eur. J. Immunol. 33:2316–2326.
    1. Sallusto, F., D. Lenig, R. Forster, M. Lipp, and A. Lanzavecchia. 1999. Two subsets of memory T lymphocytes with distinct homing potentials and effector functions. Nature. 401:708–712.
    1. Masopust, D., V. Vezys, A.L. Marzo, and L. Lefrancois. 2001. Preferential localization of effector memory cells in nonlymphoid tissue. Science. 291:2413–2416.
    1. Reinhardt, R.L., A. Khoruts, R. Merica, T. Zell, and M.K. Jenkins. 2001. Visualizing the generation of memory CD4 T cells in the whole body. Nature. 410:101–105.
    1. Weninger, W., M.A. Crowley, N. Manjunath, and U.H. von Andrian. 2001. Migratory properties of naive, effector, and memory CD8+ T cells. J. Exp. Med. 194:953–966.
    1. Hislop, A.D., N.H. Gudgeon, M.F.C. Callan, C. Fazou, H. Hasegawa, M. Salmon, and A.B. Rickinson. 2001. EBV-specific CD8+ T cell memory: relationships between epitope specificity, cell phenotype, and immediate effector function. J. Immunol. 167:2019–2029.
    1. Champagne, P., G.S. Ogg, A.S. King, C. Knabenhans, K. Ellefsen, M. Nobile, V. Appay, G.P. Rizzardi, S. Fleury, M. Lipp, et al. 2001. Skewed maturation of memory HIV-specific CD8 T lymphocytes. Nature. 410:106–111.
    1. Macallan, D.C., C.A. Fullerton, R.A. Neese, K. Haddock, S.S. Park, and M.K. Hellerstein. 1998. Measurement of cell proliferation by labeling of DNA with stable isotope-labeled glucose: studies in vitro, in animals and in humans. Proc. Natl. Acad. Sci. USA. 95:708–713.
    1. Neese, R.A., S.Q. Siler, D. Cesar, F. Antelo, D. Lee, L. Misell, K. Patel, S. Tehrani, P. Shah, and M.K. Hellerstein. 2001. Advances in the stable isotype-mass spectrometric measurement of DNA synthesis and cell proliferation. Anal. Biochem. 298:189–195.
    1. Thiel, A., J. Schmitz, S. Miltenyi, and A. Radbruch. 1997. CD45RA-expressing memory/effector Th cells committed to production of interferon-γ lack expression of CD31. Immunol. Lett. 57:189–192.
    1. Soares, M.V.D., N.J. Borthwick, M.K. Maini, G. Janossy, M. Salmon, and A.N. Akbar. 1998. IL-7-dependent extrathymic expansion of CD45RA+ T cells enables preservation of a naive repertoire. J. Immunol. 161:5909–5917.
    1. Schluns, K.S., W.C. Kieper, S.C. Jameson, and L. Lefrancois. 2000. Interleukin-7 mediates the homeostasis of naive and memory CD8 T cells in vivo. Nat. Immunol. 1:426–432.
    1. Fry, T.J., M. Moniuszko, S. Creekmore, S.J. Donohue, D.C. Douek, S. Giardina, T.T. Hecht, B.J. Hill, K. Komschlies, J. Tomaszewski, et al. 2003. IL-7 therapy dramatically alters peripheral T-cell homeostasis in normal and SIV-infected nonhuman primates. Blood. 101:2294–2299.
    1. Schonland, S.O., J.K. Zimmer, C.M. Lopez-Benitez, T. Widmann, K.D. Ramin, J.J. Goronzy, and C.M. Weyand. 2003. Homeostatic control of T-cell generation in neonates. Blood. 102:1428–1434.
    1. O'Neill, R.M., J. Hassan, and D.J. Reen. 2003. IL-7-regulated homeostatic maintenance of recent thymic emigrants in association with caspase-mediated cell proliferation and apoptotic cell death. J. Immunol. 170:4524–4531.
    1. Harris, N.L., V. Watt, F. Ronchese, and G. Le Gros. 2002. Differential T cell function and fate in lymph node and non-lymphoid tissues. J. Exp. Med. 195:317–326.
    1. Geginat, J., F. Sallusto, and A. Lanzavecchia. 2001. Cytokine-driven proliferation and differentiation of human naive, central memory, and effector memory CD4+ T cells. J. Exp. Med. 194:1711–1719.
    1. Wherry, E.J., V. Teichgraber, T.C. Becker, D. Masopust, S.M. Kaech, R. Antia, H. von Adrian, and R. Ahmed. 2003. Lineage relationship and protective immunity of memory CD8 T cell subsets. Nat. Immunol. 4:225–234.
    1. Baron, V., C. Bouneaud, A. Cumano, A. Lim, T.P. Arstila, L. Ferradini, and C. Pannetier. 2003. The repertoires of circulating human CD8+ central and effector memory T cell subsets are largely distinct. Immunity. 18:193–204.
    1. Hellerstein, M.K., R.A. Hoh, M.B. Hanley, D. Cesar, D. Lee, R.A. Neese, and J.M. McCune. 2003. Subpopulations of long-lived and short-lived T cells in advanced HIV-1 infection. J. Clin. Invest. 112:956–966.

Source: PubMed

3
Prenumerera