Modulation of Functional Connectivity and Low-Frequency Fluctuations After Brain-Computer Interface-Guided Robot Hand Training in Chronic Stroke: A 6-Month Follow-Up Study

Cathy C Y Lau, Kai Yuan, Patrick C M Wong, Winnie C W Chu, Thomas W Leung, Wan-Wa Wong, Raymond K Y Tong, Cathy C Y Lau, Kai Yuan, Patrick C M Wong, Winnie C W Chu, Thomas W Leung, Wan-Wa Wong, Raymond K Y Tong

Abstract

Hand function improvement in stroke survivors in the chronic stage usually plateaus by 6 months. Brain-computer interface (BCI)-guided robot-assisted training has been shown to be effective for facilitating upper-limb motor function recovery in chronic stroke. However, the underlying neuroplasticity change is not well understood. This study aimed to investigate the whole-brain neuroplasticity changes after 20-session BCI-guided robot hand training, and whether the changes could be maintained at the 6-month follow-up. Therefore, the clinical improvement and the neurological changes before, immediately after, and 6 months after training were explored in 14 chronic stroke subjects. The upper-limb motor function was assessed by Action Research Arm Test (ARAT) and Fugl-Meyer Assessment for Upper-Limb (FMA), and the neurological changes were assessed using resting-state functional magnetic resonance imaging. Repeated-measure ANOVAs indicated that long-term motor improvement was found by both FMA (F[2,26] = 6.367, p = 0.006) and ARAT (F[2,26] = 7.230, p = 0.003). Seed-based functional connectivity analysis exhibited that significantly modulated FC was observed between ipsilesional motor regions (primary motor cortex and supplementary motor area) and contralesional areas (supplementary motor area, premotor cortex, and superior parietal lobule), and the effects were sustained after 6 months. The fALFF analysis showed that local neuronal activities significantly increased in central, frontal and parietal regions, and the effects were also sustained after 6 months. Consistent results in FC and fALFF analyses demonstrated the increase of neural activities in sensorimotor and fronto-parietal regions, which were highly involved in the BCI-guided training. Clinical Trial Registration: This study has been registered at ClinicalTrials.gov with clinical trial registration number NCT02323061.

Keywords: brain-computer interface; fractional amplitude low-frequency fluctuations; functional magnet resonance imaging; rehabilatation robotics; stroke.

Conflict of interest statement

RT is one of the inventors of the Hong Kong Polytechnic University-held patent for the hand exoskeleton robot which was used in this study. All authors, however, are of no financial relationship whatsoever for the submitted work with Rehab-Robotics Company Ltd., the company which manufactures the commercial version of the original device under a license agreement with the University.

Copyright © 2021 Lau, Yuan, Wong, Chu, Leung, Wong and Tong.

Figures

Figure 1
Figure 1
The intervention. (A) The sequence of the training paradigm. (B) The average success rate of all training trials across 20 sessions for all subjects. Error bars stand for standard errors. The dark black line stands for the chance level. (C) The average α suppression score of all training trials across 20 sessions for all subjects. Error bars stand for standard errors.
Figure 2
Figure 2
Seed-based whole-brain analysis results. (A) The left panel showed the FC map in the Pre session when the seed was set at iM1. Voxels with z > 2.7 were shown. The iM1 seed was denoted as a green sphere in the figure. The color-coded area illustrates the significant clusters found in Post (contralesional premotor area) and Post6month (contralesional SMA). The white numbers beside the images represent the coordinate in MNI space. (B) The left panel showed the FC map in the Pre session when the seed was set at iSMA. Voxels with z > 2.7 were shown. The iSMA seed was denoted as a green sphere in the figure. The color-coded area illustrates the significant clusters found in Post (bilateral SPL) and Post6month (bilateral SPL). The white numbers beside the images represent the coordinate in MNI space.
Figure 3
Figure 3
fALFF analyses results. (A) Significant increased clusters were observed in the ipsilesional precentral area and contralesional superior parietal lobule when comparing Post and Pre sessions. (B) Significantly increased clusters were observed in the contralesional precentral area and ipsilesional superior frontal area when comparing Post6month and Pre sessions. (C) Significantly increased clusters were observed in bilateral SMA and paracentral lobule when comparing Post6month and Post sessions.

References

    1. Bajaj S., Butler A. J., Drake D., Dhamala M. (2015). Brain effective connectivity during motor-imagery and execution following stroke and rehabilitation. Neuroimage Clin. 8, 572–582. 10.1016/j.nicl.2015.06.006
    1. Bestmann S., Swayne O., Blankenburg F., Ruff C. C., Teo J., Weiskopf N., et al. . (2010). The role of contralesional dorsal premotor cortex after stroke as studied with concurrent TMS-fMRI. J. Neurosci. 30:11926. 10.1523/JNEUROSCI.5642-09.2010
    1. Biasiucci A., Leeb R., Iturrate I., Perdikis S., Al-Khodairy A., Corbet T., et al. . (2018). Brain-actuated functional electrical stimulation elicits lasting arm motor recovery after stroke. Nat. Commun. 9:2421. 10.1038/s41467-018-04673-z
    1. Carino-Escobar R. I., Carrillo-Mora P., Valdés-Cristerna R., Rodriguez-Barragan M. A., Hernandez-Arenas C., Quinzaños-Fresnedo J., et al. . (2019). Longitudinal analysis of stroke patients' brain rhythms during an intervention with a brain-computer interface. Neural Plast. 2019, 7084618–7084618. 10.1155/2019/7084618
    1. Carter A. R., Shulman G. L., Corbetta M. (2012). Why use a connectivity-based approach to study stroke and recovery of function? Neuroimage 62, 2271–2280. 10.1016/j.neuroimage.2012.02.070
    1. Cervera M. A., Soekadar S. R., Ushiba J., Millán J. D. R., Liu M., Birbaumer N., et al. . (2018). Brain-computer interfaces for post-stroke motor rehabilitation: a meta-analysis. Ann. Clin. Transl. Neurol. 5, 651–663. 10.1002/acn3.544
    1. Chen X., Lu B., Yan C.-G. (2018). Reproducibility of R-fMRI metrics on the impact of different strategies for multiple comparison correction and sample sizes. Hum. Brain Mapp. 39, 300–318. 10.1002/hbm.23843
    1. Chen Y.-C., Xia W., Luo B., Muthaiah V. P. K., Xiong Z., Zhang J., et al. . (2015). Frequency-specific alternations in the amplitude of low-frequency fluctuations in chronic tinnitus. Front. Neural Circuits 9:67. 10.3389/fncir.2015.00067
    1. Cho W., Heilinger A., Ortner R., Murovec N., Xu R., Zehetner M., et al. (2019). Feasibility of brain-computer interface triggered functional electrical stimulation and avatar for motor improvement in chronic stroke patients, in: Converging Clinical and Engineering Research on Neurorehabilitation III, eds. L. Masia, S. Micera, M. Akay, and J. L. Pons (Pisa: Springer International Publishing: ), 1097–1100.
    1. Cincotti F., Pichiorri F., Aric,ò P., Aloise F., Leotta F., Fallani F. D. V., et al. . (2012). EEG-based brain-computer interface to support post-stroke motor rehabilitation of the upper limb, in: 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 4112–4115.
    1. Daly J. J., Wolpaw J. R. (2008). Brain–computer interfaces in neurological rehabilitation. Lancet Neurol. 7, 1032–1043. 10.1016/S1474-4422(08)70223-0
    1. Egorova N., Veldsman M., Cumming T., Brodtmann A. (2017). Fractional amplitude of low-frequency fluctuations (fALFF) in post-stroke depression. Neuroimage Clin. 16, 116–124. 10.1016/j.nicl.2017.07.014
    1. Friston K. J., Williams S., Howard R., Frackowiak R. S. J., Turner R. (1996). Movement-related effects in fMRI time-series. Magn. Reson. Med. 35, 346–355. 10.1002/mrm.1910350312
    1. Frolov A. A., Mokienko O., Lyukmanov R., Biryukova E., Kotov S., Turbina L., et al. . (2017). Post-stroke rehabilitation training with a motor-imagery-based brain-computer interface (BCI)-controlled hand exoskeleton: a randomized controlled multicenter trial. Front. Neurosci. 11:400. 10.3389/fnins.2017.00400
    1. Fugl-Meyer A. R., Jääsk,ö L., Leyman I., Olsson S., Steglind S. (1975). The post-stroke hemiplegic patient. 1. a method for evaluation of physical performance. Scand. J. Rehabil. Med. 7, 13–31.
    1. Grefkes C., Fink G. R. (2014). Connectivity-based approaches in stroke and recovery of function. Lancet Neurol. 13, 206–216. 10.1016/S1474-4422(13)70264-3
    1. Guillot A., Hoyek N., Louis M., Collet C. (2012). Understanding the timing of motor imagery: recent findings and future directions. Int. Rev. Sport Exerc. Psychol. 5, 3–22. 10.1080/1750984X.2011.623787
    1. Hanakawa T., Dimyan M. A., Hallett M. (2008). Motor planning, imagery, and execution in the distributed motor network: a time-course study with functional MRI. Cerebral Cortex 18, 2775–2788. 10.1093/cercor/bhn036
    1. Hsieh Y.-W., Lin K.-C., Wu C.-Y., Shih T.-Y., Li M.-W., Chen C.-L. (2018). Comparison of proximal versus distal upper-limb robotic rehabilitation on motor performance after stroke: a cluster controlled trial. Sci. Rep. 8:2091. 10.1038/s41598-018-20330-3
    1. Khan A., Chen C., Yuan K., Wang X., Mehra P., Liu Y., et al. . (2020). Changes in electroencephalography complexity and functional magnetic resonance imaging connectivity following robotic hand training in chronic stroke. Top. Stroke Rehabil. 1–13. 10.1080/10749357.2020.1803584
    1. Kimberley T. J., Khandekar G., Borich M. (2008). fMRI reliability in subjects with stroke. Exp. Brain Res. 186, 183–190. 10.1007/s00221-007-1221-8
    1. Kwakkel G., Kollen B., Twisk J. (2006). Impact of time on improvement of outcome after stroke. Stroke 37, 2348–2353. 10.1161/01.STR.0000238594.91938.1e
    1. La C., Mossahebi P., Nair V. A., Young B. M., Stamm J., Birn R., et al. . (2016). Differing patterns of altered slow-5 oscillations in healthy aging and ischemic stroke. Front. Hum. Neurosci. 10:156. 10.3389/fnhum.2016.00156
    1. Loubinoux I., Carel C., Pariente J., Dechaumont S., Albucher J.-F., Marque P., et al. . (2003). Correlation between cerebral reorganization and motor recovery after subcortical infarcts. Neuroimage 20, 2166–2180. 10.1016/j.neuroimage.2003.08.017
    1. Lyle R. C. (1981). A performance test for assessment of upper limb function in physical rehabilitation treatment and research. Int. J. Rehabil. Res. 4, 483–492. 10.1097/00004356-198112000-00001
    1. Mane R., Chouhan T., Guan C. (2020). BCI for stroke rehabilitation: motor and beyond. J. Neural Eng. 17:041001. 10.1088/1741-2552/aba162
    1. Mrachacz-Kersting N., Stevenson A. J. T., Jørgensen H. R. M., Severinsen K. E., Aliakbaryhosseinabadi S., Jiang N., et al. . (2019). Brain state–dependent stimulation boosts functional recovery following stroke. Ann. Neurol. 85, 84–95. 10.1002/ana.25375
    1. Müller-Putz G., Scherer R., Brunner C., Leeb R., Pfurtscheller G. (2008). Better than random? a closer look on BCI results. Int. Bioelektromagn. 10, 52–55. Available online at:
    1. Neuper C., Scherer R., Wriessnegger S., Pfurtscheller G. (2009). Motor imagery and action observation: modulation of sensorimotor brain rhythms during mental control of a brain–computer interface. Clin. Neurophysiol. 120, 239–247. 10.1016/j.clinph.2008.11.015
    1. Norouzi-Gheidari N., Archambault P. S., Fung J. (2012). Effects of robot-assisted therapy on stroke rehabilitation in upper limbs: systematic review and meta-analysis of the literature. J. Rehabil. Res. Dev. 49, 479–496. 10.1682/JRRD.2010.10.0210
    1. Ono T., Shindo K., Kawashima K., Ota N., Ito M., Ota T. (2014) Brain-computer interface with somatosensory feedback improves functional recovery from severe hemiplegia due to chronic stroke. Front. Neuroeng. 7:19. 10.3389/fneng.2014.00019.
    1. Page S. J., Fulk G. D., Boyne P. (2012). Clinically important differences for the upper-extremity Fugl-Meyer scale in people with minimal to moderate impairment due to chronic stroke. Phys. Ther. 92, 791–798. 10.2522/ptj.20110009
    1. Park C.-H., Chang Won H., Ohn Suk H., Kim Sung T., Bang Oh Y., Pascual-Leone A., et al. . (2011). Longitudinal changes of resting-state functional connectivity during motor recovery after stroke. Stroke 42, 1357–1362. 10.1161/STROKEAHA.110.596155
    1. Perry A., Bentin S. (2009). Mirror activity in the human brain while observing hand movements: a comparison between EEG desynchronization in the μ-range and previous fMRI results. Brain Res. 1282, 126–132. 10.1016/j.brainres.2009.05.059
    1. Pichiorri F., Morone G., Petti M., Toppi J., Pisotta I., Molinari M., et al. . (2015). Brain–computer interface boosts motor imagery practice during stroke recovery. Ann. Neurol. 77, 851–865. 10.1002/ana.24390
    1. Power J. D., Barnes K. A., Snyder A. Z., Schlaggar B. L., Petersen S. E. (2012). Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion. Neuroimage 59, 2142–2154. 10.1016/j.neuroimage.2011.10.018
    1. Qian Q., Nam C., Guo Z., Huang Y., Hu X., Ng S. C., et al. . (2019). Distal versus proximal - an investigation on different supportive strategies by robots for upper limb rehabilitation after stroke: a randomized controlled trial. J. Neuroeng. Rehabil. 16:64. 10.1186/s12984-019-0537-5
    1. Ramos-Murguialday A., Broetz D., Rea M., Läer L., Yilmaz Ö., Brasil F. L., et al. . (2013). Brain–machine interface in chronic stroke rehabilitation: a controlled study. Ann. Neurol. 74, 100–108. 10.1002/ana.23879
    1. Ramos-Murguialday A., Curado M. R., Broetz D., Yilmaz Ö., Brasil F. L., Liberati G., et al. . (2019). Brain-machine interface in chronic stroke: randomized trial long-term follow-up. Neurorehabil. Neural Repair 33, 188–198. 10.1177/1545968319827573
    1. Remsik A. B., Williams L., Gjini K., Dodd K., Thoma J., Jacobson T., et al. . (2019). Ipsilesional Mu rhythm desynchronization and changes in motor behavior following post stroke BCI intervention for motor rehabilitation. Front. Neurosci. 13:53. 10.3389/fnins.2019.00053
    1. Seitz R. J., Huang Y., Knorr U., Tellmann L., Herzog H., Freund H.-J. (1995). Large-scale plasticity of the human motor cortex. Neuroreport 6, 742–744. 10.1097/00001756-199503270-00009
    1. Sharma N., Baron J.-C., Rowe J. B. (2009). Motor imagery after stroke: Relating outcome to motor network connectivity. Ann. Neurol. 66, 604–616. 10.1002/ana.21810
    1. Soekadar S. R., Silvoni S., Cohen L. G., Birbaumer N. (2015). Brain–machine interfaces in stroke neurorehabilitation, in Clinical Systems Neuroscience, eds. K. Kansaku, L. G. Cohen, and N. Birbaumer (Tokyo: Springer Japan; ), 3–14.
    1. Tombari D., Loubinoux I., Pariente J., Gerdelat A., Albucher J.-F., Tardy J., et al. . (2004). A longitudinal fMRI study: in recovering and then in clinically stable sub-cortical stroke patients. Neuroimage 23, 827–839. 10.1016/j.neuroimage.2004.07.058
    1. Tong K. Y., Pang P. M. K., Chen M., Ho S. K., Zhou H., Chan D. T. W. (2013). Wearable power assistive device for helping a user to move their hand. United States Patent US12/472,295. United States Patent and Trademark Office.
    1. Van Den Heuvel M. P., Hulshoff Pol H. E. (2010). Exploring the brain network: a review on resting-state fMRI functional connectivity. Eur. Neuropsychopharmacol. 20, 519–534. 10.1016/j.euroneuro.2010.03.008
    1. Van Der Lee J. H., De Groot V., Beckerman H., Wagenaar R. C., Lankhorst G. J., Bouter L. M. (2001). The intra- and interrater reliability of the action research arm test: a practical test of upper extremity function in patients with stroke. Arch. Phys. Med. Rehabil. 82, 14–19. 10.1053/apmr.2001.18668
    1. Van Dokkum L. E. H., Ward T., Laffont I. (2015). Brain computer interfaces for neurorehabilitation–its current status as a rehabilitation strategy post-stroke. Ann. Phys. Rehabil. Med. 58, 3–8. 10.1016/j.rehab.2014.09.016
    1. Van Essen D. C., Ugurbil K., Auerbach E., Barch D., Behrens T. E. J., Bucholz R., et al. . (2012). The human connectome project: a data acquisition perspective. Neuroimage 62, 2222–2231. 10.1016/j.neuroimage.2012.02.018
    1. Várkuti B., Guan C., Pan Y., Phua K. S., Ang K. K., Kuah C. W. K., et al. . (2012). Resting state changes in functional connectivity correlate with movement recovery for BCI and robot-assisted upper-extremity training after stroke. Neurorehabil. Neural Repair 27, 53–62. 10.1177/1545968312445910
    1. Wang X., Wang H., Xiong X., Sun C., Zhu B., Xu Y., et al. . (2020). Motor imagery training after stroke increases slow-5 oscillations and functional connectivity in the ipsilesional inferior parietal lobule. Neurorehabil. Neural Repair 34, 321–332. 10.1177/1545968319899919
    1. Woodbury M. L., Velozo C. A., Richards L. G., Duncan P. W. (2013). Rasch analysis staging methodology to classify upper extremity movement impairment after stroke. Arch. Phys. Med. Rehabil. 94, 1527–1533. 10.1016/j.apmr.2013.03.007
    1. Yan C.-G., Wang X.-D., Zuo X.-N., Zang Y.-F. (2016). DPABI: data processing & analysis for (resting-state) brain imaging. Neuroinformatics 14, 339–351. 10.1007/s12021-016-9299-4
    1. Yuan K., Wang X., Chen C., Lau C. C. Y., Chu W. C. W., Tong R. K. Y. (2020). Interhemispheric functional reorganization and its structural base after BCI-guided upper-limb training in chronic stroke. IEEE Trans. Neural Syst. Rehabil. Eng. 28, 2525–2536. 10.1109/TNSRE.2020.3027955
    1. Zhang T., Liu T., Li F., Li M., Liu D., Zhang R., et al. . (2016). Structural and functional correlates of motor imagery BCI performance: insights from the patterns of fronto-parietal attention network. Neuroimage 134, 475–485. 10.1016/j.neuroimage.2016.04.030
    1. Zhu J., Jin Y., Wang K., Zhou Y., Feng Y., Yu M., et al. . (2015). Frequency-dependent changes in the regional amplitude and synchronization of resting-state functional MRI in stroke. PLoS ONE 10:e0123850. 10.1371/journal.pone.0123850
    1. Zou Q.-H., Zhu C.-Z., Yang Y., Zuo X.-N., Long X.-Y., Cao Q.-J., et al. . (2008). An improved approach to detection of amplitude of low-frequency fluctuation (ALFF) for resting-state fMRI: fractional ALFF. J. Neurosci. Methods 172, 137–141. 10.1016/j.jneumeth.2008.04.012
    1. Zuo X.-N., Di Martino A., Kelly C., Shehzad Z. E., Gee D. G., Klein D. F., et al. . (2010). The oscillating brain: complex and reliable. Neuroimage 49, 1432–1445. 10.1016/j.neuroimage.2009.09.037

Source: PubMed

3
Prenumerera