Can levosimendan reduce ECMO weaning failure in cardiogenic shock?: a cohort study with propensity score analysis

Enrique Guilherme, Matthias Jacquet-Lagrèze, Matteo Pozzi, Felix Achana, Xavier Armoiry, Jean-Luc Fellahi, Enrique Guilherme, Matthias Jacquet-Lagrèze, Matteo Pozzi, Felix Achana, Xavier Armoiry, Jean-Luc Fellahi

Abstract

Background: Veno-arterial extracorporeal membrane oxygenation (VA-ECMO) has been increasingly used over the last decade in patients with refractory cardiogenic shock. ECMO weaning can, however, be challenging and lead to circulatory failure and death. Recent data suggest a potential benefit of levosimendan for ECMO weaning. We sought to further investigate whether the use of levosimendan could decrease the rate of ECMO weaning failure in adult patients with refractory cardiogenic shock.

Methods: We performed an observational single-center cohort study. All patients undergoing VA-ECMO from January 2012 to December 2018 were eligible and divided into two groups: group levosimendan and group control (without levosimendan). The primary endpoint was VA-ECMO weaning failure defined as death during VA-ECMO treatment or within 24 h after VA-ECMO removal. Secondary outcomes were mortality at day 28 and at 6 months. The two groups were compared after propensity score matching. P < 0.05 was considered statistically significant.

Results: Two hundred patients were analyzed (levosimendan group: n = 53 and control group: n = 147). No significant difference was found between groups on baseline characteristics except for ECMO duration, which was longer in the levosimendan group (10.6 ± 4.8 vs. 6.5 ± 4.7 days, p < 0.001). Levosimendan administration started 6.6 ± 5.4 days on average following ECMO implantation. After matching of 48 levosimendan patients to 78 control patients, the duration of ECMO was similar in both groups. The rate of weaning failure was 29.1% and 35.4% in levosimendan and control groups, respectively (OR: 0.69, 95%CI: 0.25-1.88). No significant difference was found between groups for all secondary outcomes.

Conclusion: Levosimendan did not improve the rate of successful VA-ECMO weaning in patients with refractory cardiogenic shock.

Trial registration: ClinicalTrials.gov, NCT04323709 .

Keywords: Cardiogenic shock; Circulatory failure; ECMO weaning failure; Levosimendan; VA-ECMO.

Conflict of interest statement

JLF is a member of an advisory board working for ORION Pharma France and has received honoraria from the company for his participation in the board.

Figures

Fig. 1
Fig. 1
The study flow chart
Fig. 2
Fig. 2
Proportion of patients receiving levosimendan over the study period (2012–2018)
Fig. 3
Fig. 3
Kaplan-Meier survival curves in the unmatched cohort of patients (N = 200)

References

    1. Ventetuolo CE, Muratore CS. Extracorporeal life support in critically ill adults. Am J Respir Crit Care Med. 2014;190:497–508. doi: 10.1164/rccm.201404-0736CI.
    1. Extracorporeal Life Support Organization. ELSO guidelines for adult cardiac failure v1.3. Michigan, USA, 2015. . aspx. Accessed 1 July 2015.
    1. Allou N, Lo Pinto H, Persichini R, Bouchet B, Braunberger E, Lugagne N, et al. Cannula-related infection in patients supported by peripheral ECMO: clinical and microbiological characteristics. ASAIO J. 2019;65(2):180–186. doi: 10.1097/MAT.0000000000000771.
    1. Aubron C, DePuydt J, Belon F, Bailey M, Schmidt M, Sheldrake J, et al. Predictive factors of bleeding events in adults undergoing extracorporeal membrane oxygenation. Ann Intensive Care. 2016;6(1):97. doi: 10.1186/s13613-016-0196-7.
    1. Trudzinski FC, Minko P, Rapp D, Fähndrich S, Haake H, Haab M, et al. Runtime and aPTT predict venous thrombosis and thromboembolism in patients on extracorporeal membrane oxygenation: a retrospective analysis. Ann Intensive Care. 2016;6(1):66. doi: 10.1186/s13613-016-0172-2.
    1. Levy B, Bastien O, Karim B, Cariou A, Chouihed T, Combes A, Mebazaa A, Megarbane B, Plaisance P, Ouattara A, Spaulding C, Teboul JL, Vanhuyse F, Boulain T, Kuteifan K. Experts’ recommendations for the management of adult patients with cardiogenic shock. Ann Intensive Care. 2015;5(1):52. doi: 10.1186/s13613-015-0094-4.
    1. Ellender T, Skinner J. The use of vasopressors and inotropes in the emergency medical treatment of shock. Emerg Med Clin N Am. 2008;26:759–786. doi: 10.1016/j.emc.2008.04.001.
    1. Haikala H, Kaivola J, Nissinen E, Wall P, Levijoki J, Linden IB. Cardiac troponin C as a target protein for a novel calcium sensitizing drug, levosimendan. J Mol Cell Cardiol. 1995;27:1859–1866. doi: 10.1016/0022-2828(95)90009-8.
    1. Erdei N, Papp Z, Pollesello P, et al. The levosimendan metabolite OR- 1896 elicits vasodilation by activating the K (ATP) and BK (Ca) channels in rat isolated arterioles. Br J Pharmacol. 2006;148:696–702. doi: 10.1038/sj.bjp.0706781.
    1. Pathak A, Lebrin M, Vaccaro A, Senard JM, Despas F. Pharmacology of levosimendan: inotropic, vasodilatory and cardioprotective effects. J Clin Pharm Ther. 2013;38(5):341–349. doi: 10.1111/jcpt.12067.
    1. Cholley B, Levy B, Fellahi JL, Longrois D, Amour J, Ouattara A, Mebazaa A. Levosimendan in the light of the results of the recent randomized controlled trials: an expert opinion paper. Crit Care. 2019;23(1):385. doi: 10.1186/s13054-019-2674-4.
    1. Distelmaier K, Roth C, Schrutka L, et al. Beneficial effects of levosimendan on survival in patients undergoing extracorporeal membrane oxygenation after cardiovascular surgery. Br J Anaesth. 2016;117:52–58. doi: 10.1093/bja/aew151.
    1. Sangalli F, Avalli L, Laratta M, et al. Effects of levosimendan on endothelial function and hemodynamics during weaning from venoarterial extracorporeal life support. J Cardiothorac Vasc Anesth. 2016;30:1449–1453. doi: 10.1053/j.jvca.2016.03.139.
    1. van Diepen S, Katz JN, Albert NM, Henry TD, Jacobs AK, Kapur NK, Kilic A, Menon V, Ohman EM, Sweitzer NK, Thiele H, Washam JB, Cohen MG. Contemporary management of cardiogenic shock: a scientific statement from the American Heart Association. Circulation. 2017;136:e232–e268. doi: 10.1161/CIRCULATIONAHA.117.029532.
    1. Aissaoui N, Luyt CE, Leprince P, Trouillet JL, Léger P, Pavie A, et al. Predictors of successful extracorporeal membrane oxygenation (ECMO) weaning after assistance for refractory cardiogenic shock. Intensive Care Med. 2011;37:1738–1745. doi: 10.1007/s00134-011-2358-2.
    1. Jacky A, Rudiger A, Krüger B, et al. Comparison of levosimendan and milrinone for ECLS weaning in patients after cardiac surgery—a retrospective before and after study. J Cardiothorac Vasc Anesth. 2018;32:2112–2119. doi: 10.1053/j.jvca.2018.04.019.
    1. Cheng R, Hachamovitch R, Kittleson M, Patel J, Arabia F, Moriguchi J, Esmailian F, Azarbal B. Clinical outcomes in fulminant myocarditis requiring extracorporeal membrane oxygenation: a weighted meta-analysis of 170 patients. J Card Fail. 2014;20(6):400–406. doi: 10.1016/j.cardfail.2014.03.005.
    1. Lorusso R, Centofanti P, Gelsomino S, et al. Venoarterial extracorporeal membrane oxygenation for acute fulminant myocarditis in adult patients: a 5-year multi-institutional experience. Ann Thorac Surg. 2016;101(3):919–926. doi: 10.1016/j.athoracsur.2015.08.014.
    1. Masson R, Colas V, Parienti JJ, Lehoux P, Massetti M, Charbonneau P, Saulnier F, Daubin C. A comparison of survival with and without extracorporeal life support treatment for severe poisoning due to drug intoxication. Resuscitation. 2012;83(11):1413–1417. doi: 10.1016/j.resuscitation.2012.03.028.
    1. Muller G, Flecher E, Lebreton G, Luyt CE, Trouillet JL, Bréchot N, Schmidt M, Mastroianni C, Chastre J, Leprince P, Anselmi A, Combes A. The ENCOURAGE mortality risk score and analysis of long-term outcomes after VA-ECMO for acute myocardial infarction with cardiogenic shock. Intensive Care Med. 2016;42(3):370–378. doi: 10.1007/s00134-016-4223-9.
    1. Pabst D, Foy AJ, Peterson B, Soleimani B, Brehm CE. Predicting survival in patients treated with extracorporeal membrane oxygenation after myocardial infarction. Crit Care Med. 2018;46(5):e359–e363. doi: 10.1097/CCM.0000000000002995.
    1. Biancari F, Perrotti A, Dalén M, Guerrieri M, Fiore A, Reichart D, Dell'Aquila AM, Gatti G, Ala-Kokko T, et al. Meta-analysis of the outcome after postcardiotomy venoarterial extracorporeal membrane oxygenation in adult patients. J Cardiothorac Vasc Anesth. 2018;32(3):1175–1182. doi: 10.1053/j.jvca.2017.08.048.
    1. Dangers L, Bréchot N, Schmidt M, Lebreton G, Hékimian G, Nieszkowska A, Besset S, Trouillet JL, Chastre J, Leprince P, Combes A, Luyt CE. Extracorporeal membrane oxygenation for acute decompensated heart failure. Crit Care Med. 2017;45(8):1359–1366. doi: 10.1097/CCM.0000000000002485.
    1. Ouweneel DM, Schotborgh JV, et al. Extracorporeal life support during cardiac arrest and cardiogenic shock: a systematic review and meta-analysis. Intensive Care Med. 2016;42(12):1922–1934. doi: 10.1007/s00134-016-4536-8.
    1. Pozzi M, Bottin C, Armoiry X, Sebbag L, Boissonnat P, Hugon-Vallet E, Koffel C, Flamens C, Paulus S, Fellahi JL, Obadia JF. Extracorporeal life support for primary graft dysfunction after heart transplantation. Interact Cardiovasc Thorac Surg. 2018;27(5):778–784. doi: 10.1093/icvts/ivy157.
    1. Pozzi M, Armoiry X, Achana F, Koffel C, Pavlakovic I, Lavigne F, Fellahi JL, Obadia JF. Extracorporeal life support for refractory cardiac arrest: a 10-year comparative analysis. Ann Thorac Surg. 2019;107(3):809–816. doi: 10.1016/j.athoracsur.2018.09.007.
    1. Sascha O. Becker and Andrea Ichino. Estimation of average treatment effects based on propensity scores February 2002 Stata Journal 2(4):358–377.
    1. Leuven, E., and B. Sianesi. 2003. “PSMATCH2: Stata module to perform full Mahalanobis and propensity score matching, common support graphing, and covariate imbalance testing, version 4.0.6”).
    1. Lee HS, Kim HS, Lee SH, Lee SA, Hwang JJ, Park JB, Kim YH, Moon HJ, Lee WS. Clinical implications of the initial SAPS II in veno-arterial extracorporeal oxygenation. J Thorac Dis. 2019;11(1):68–83. doi: 10.21037/jtd.2018.12.20.
    1. Aso S, Matsui H, Fushimi K, Yasunaga H. In-hospital mortality and successful weaning from venoarterial extracorporeal membrane oxygenation: analysis of 5263 patients using a national inpatient database in Japan. Crit Care. 2016;5(20):80. doi: 10.1186/s13054-016-1261-1.
    1. Smith M, Vukomanovic A, Brodie D, Thiagarajan R, Rycus P, Buscher H. Duration of veno-arterial extracorporeal life support (VA ECMO) and outcome: an analysis of the Extracorporeal Life Support Organization (ELSO) registry. Crit Care. 2017;21(1):45. doi: 10.1186/s13054-017-1633-1.
    1. Affronti A, di Bella I, Carino D, et al. Levosimendan may improve weaning outcomes in venoarterial ECMO patients. ASAIO J. 2013;59:554–557. doi: 10.1097/MAT.0b013e3182a4b32e.
    1. Vally S, Ferdynus C, Persichini R, Bouchet B, Braunberger E, Lo Pinto H, Martinet O, Vandroux D, Aujoulat T, Allyn J, Allou N. Impact of levosimendan on weaning from peripheral venoarterial extracorporeal membrane oxygenation in intensive care unit. Ann Intensive Care. 2019;9(1):24. doi: 10.1186/s13613-019-0503-1.
    1. Nuttall GA, Houle TT. Liars, damn liars, and propensity scores. Anesthesiology. 2008;108(1):3–4. doi: 10.1097/01.anes.0000296718.35703.20.
    1. Armoiry X, Obadia JF, et al. Comparison of transcatheter versus surgical aortic valve implantation in high-risk patients: a nationwide study in France. J Thorac Cardiovasc Surg. 2018;156(3):1017–1025.e4. doi: 10.1016/j.jtcvs.2018.02.092.
    1. Pappalardo F, Pieri M, et al. Timing and strategy for weaning from venoarterial ECMO are complex issues. J Cardiothorac Vasc Anesth. 2015;29(4):906–911. doi: 10.1053/j.jvca.2014.12.011.

Source: PubMed

3
Prenumerera