Agreement in breast lesion assessment and final BI-RADS classification between radial and meander-like breast ultrasound

Pascale Brasier-Lutz, Claudia Jäggi-Wickes, Sabine Schaedelin, Rosemarie Burian, Cora-Ann Schoenenberger, Rosanna Zanetti-Dällenbach, Pascale Brasier-Lutz, Claudia Jäggi-Wickes, Sabine Schaedelin, Rosemarie Burian, Cora-Ann Schoenenberger, Rosanna Zanetti-Dällenbach

Abstract

Background: This study prospectively investigates the agreement between radial (r-US) and meander-like (m-US) breast ultrasound with regard to lesion location, lesion size, morphological characteristics and final BI-RADS classification of individual breast lesions.

Methods: Each patient of a consecutive, unselected, mixed collective received a dual ultrasound examination.

Results: The agreement between r-US and m-US for lesion location ranged from good (lesion to mammilla distance ICC 0.64; lesion to skin distance ICC 0.72) to substantial (clock-face localization κ 0.70). For lesion size the agreement was good (diameter ICC 0.72; volume ICC 0.69), for lesion margin and architectural distortion it was substantial (κ 0.68 and 0.70, respectively). Most importantly, there was a substantial agreement (κ 0.76) in the final BI-RADS classification between r-US and m-US.

Conclusions: Our recent comparison of radial and meander-like breast US revealed that the diagnostic accuracy of the two scanning methods was comparable. In this study, we observe a high degree of agreement between m-US and r-US for the lesion description (location, size, morphology) and final BI-RADS classification. These findings corroborate that r-US is a suitable alternative to m-US in daily clinical practice. Trial registration NCT02358837. Registered January 2015, retrospectively registered https://ichgcp.net/clinical-trials-registry/NCT02358837&cntry=&state=&city=&dist =.

Keywords: Agreement; BI-RADS final assessment; Breast ultrasound; Meander-like breast ultrasound; Radial breast ultrasound; Reliability.

Conflict of interest statement

We declare that we have no conflict of interest.

Figures

Fig. 1
Fig. 1
Radial and meander-like breast ultrasound. a Scheme of probe movement in radial scanning and in radial scanning of the axillary tail (left panel), and anti-radial movement (right panel). b Scheme of meander-like scanning movement in two orthogonal planes. Republished with adaptation from Arch Gynecol Obstet, from 'Comparison of radial and meander-like breast ultrasound with respect to diagnostic accuracy and examination time', Jäggi-Wickes et al., 301:1533, 2020; [18] with permission

References

    1. Kim WH, Chang JM, Moon WK, Cho N, Yi A, Koo HR, Kim SJ. Intraductal mass on breast ultrasound: final outcomes and predictors of malignancy. AJR Am J Roentgenol. 2013;200:932–937. doi: 10.2214/AJR.12.9093.
    1. Ballesio L, Maggi C, Savelli S, Angeletti M, Rabuffi P, Manganaro L, Porfiri LM. Adjunctive diagnostic value of ultrasonography evaluation in patients with suspected ductal breast disease. Radiol Med. 2007;112:354–365. doi: 10.1007/s11547-007-0146-4.
    1. Hooley RJ, Scoutt LM, Philpotts LE. Breast ultrasonography: state of the art. Radiology. 2013;268:642–659. doi: 10.1148/radiol.13121606.
    1. Stavros TA. Breast ultasound. Lippincott Williams & Wilkins, Philadelphia;2004.
    1. Madjar H, Rickard M, Jellins J, Otto R. IBUS guidelines for the ultrasonic examination of the breast. IBUS International Faculty. International Breast Ultrasound School. Eur J Ultrasound. 1999;9:99–102. doi: 10.1016/S0929-8266(99)00016-6.
    1. Ebner L, Bonel HM, Huber A, Ross S, Christe A. Diagnostic performance and additional value of elastosonography in focal breast lesions: statistical correlation between size-dependant Strain Index Measurements, Multimodality-BI-RADS Score, and Histopathology in a Clinical Routine Setting. ISRN Radiol. 2014;396368.
    1. Gheonea IA, Donoiu L, Camen D, Popescu FC, Bondari S. Sonoelastography of breast lesions: a prospective study of 215 cases with histopathological correlation. Rom J Morphol Embryol. 2011;52:1209–1214.
    1. Gheonea IA, Stoica Z, Bondari S. Differential diagnosis of breast lesions using ultrasound elastography. Indian J Radiol Imaging. 2011;21:301–305. doi: 10.4103/0971-3026.90697.
    1. Hooley RJ, Greenberg KL, Stackhouse RM, Geisel JL, Butler RS, Philpotts LE. Screening US in patients with mammographically dense breasts: initial experience with Connecticut Public Act 09–41. Radiology. 2012;265:59–69. doi: 10.1148/radiol.12120621.
    1. Wojcinski S, Cassel M, Farrokh A, Soliman AA, Hille U, Schmidt W, Degenhardt F, Hillemanns P. Variations in the elasticity of breast tissue during the menstrual cycle determined by real-time sonoelastography. J Ultrasound Med. 2012;31:63–72. doi: 10.7863/jum.2012.31.1.63.
    1. Mendelson EBB-V, M, Berg WA, et al. ACR BI-RADS® Ultrasound in: ACR BI-RADS Atlas®, Breast Imaging Reporting and Data System 2013.
    1. Choi EJ, Choi H, Park EH, Song JS, Youk JH. Evaluation of an automated breast volume scanner according to the fifth edition of BI-RADS for breast ultrasound compared with hand-held ultrasound. Eur J Radiol. 2018;99:138–145
    1. Schwab F, Redling K, Siebert M, Schotzau A, Schoenenberger CA, Zanetti-Dallenbach R. Inter- and Intra-Observer Agreement in Ultrasound BI-RADS Classification and Real-Time Elastography Tsukuba Score Assessment of Breast Lesions. Ultrasound Med Biol. 2016;42:2622–2629. doi: 10.1016/j.ultrasmedbio.2016.06.017.
    1. Park CS, Kim SH, Jung NY, Choi JJ, Kang BJ, Jung HS. Interobserver variability of ultrasound elastography and the ultrasound BI-RADS lexicon of breast lesions. Breast Cancer. 2015;22:153–160. doi: 10.1007/s12282-013-0465-3.
    1. Elverici E, Zengin B, Nurdan Barca A, Didem Yilmaz P, Alimli A, Araz L. Interobserver and Intraobserver Agreement of Sonographic BIRADS Lexicon in the Assessment of Breast Masses. Iran J Radiol. 2013;10:122–127. doi: 10.5812/iranjradiol.10708.
    1. Youk JH, Gweon HM, Son EJ, Chung J, Kim JA, Kim EK. Three-dimensional shear-wave elastography for differentiating benign and malignant breast lesions: comparison with two-dimensional shear-wave elastography. Eur Radiol. 2013;23:1519–1527. doi: 10.1007/s00330-012-2736-3.
    1. Berg WA, Blume JD, Cormack JB, Mendelson EB. Training the ACRIN 6666 Investigators and effects of feedback on breast ultrasound interpretive performance and agreement in BI-RADS ultrasound feature analysis. AJR Am J Roentgenol. 2012;199:224–235. doi: 10.2214/AJR.11.7324.
    1. Cosgrove DO, Berg WA, Dore CJ, Skyba DM, Henry JP, Gay J, Cohen-Bacrie C, Group BES. Shear wave elastography for breast masses is highly reproducible. Eur Radiol. 2012;22:1023–32.
    1. Schaefer FK, Heer I, Schaefer PJ, Mundhenke C, Osterholz S, Order BM, Hofheinz N, Hedderich J, Heller M, Jonat W, Schreer I. Breast ultrasound elastography–results of 193 breast lesions in a prospective study with histopathologic correlation. Eur J Radiol. 2011;77:450–456. doi: 10.1016/j.ejrad.2009.08.026.
    1. Abdullah N, Mesurolle B, El-Khoury M, Kao E. Breast imaging reporting and data system lexicon for US: interobserver agreement for assessment of breast masses. Radiology. 2009;252:665–672. doi: 10.1148/radiol.2523080670.
    1. Lee HJ, Kim EK, Kim MJ, Youk JH, Lee JY, Kang DR, Oh KK. Observer variability of Breast Imaging Reporting and Data System (BI-RADS) for breast ultrasound. Eur J Radiol. 2008;65:293–298. doi: 10.1016/j.ejrad.2007.04.008.
    1. Park CS, Lee JH, Yim HW, Kang BJ, Kim HS, Jung JI, Jung NY, Kim SH. Observer agreement using the ACR Breast Imaging Reporting and Data System (BI-RADS)-ultrasound, First Edition (2003). Korean J Radiol. 2007;8:397–402.
    1. Lazarus E, Mainiero MB, Schepps B, Koelliker SL, Livingston LS. BI-RADS lexicon for US and mammography: interobserver variability and positive predictive value. Radiology. 2006;239:385–391. doi: 10.1148/radiol.2392042127.
    1. Lee YJ, Choi SY, Kim KS, Yang PS. Variability in Observer Performance Between Faculty Members and Residents Using Breast Imaging Reporting and Data System (BI-RADS)-Ultrasound, Fifth Edition (2013). Iran J Radiol. 2016;13:e28281.
    1. Choi EJ, Lee EH, Kim YM, Chang YW, Lee JH, Park YM, Kim KW, Kim YJ, Jun JK, Hong S, On the Behalf of the Alliance for Breast Cancer Screening In K Interobserver agreement in breast ultrasound categorization in the Mammography and Ultrasonography Study for Breast Cancer Screening Effectiveness (MUST-BE) trial: results of a preliminary study. Ultrasonography. 2019;38:172–180. doi: 10.14366/usg.18012.
    1. Yoon JH, Kim MH, Kim EK, Moon HJ, Kwak JY, Kim MJ. Interobserver variability of ultrasound elastography: how it affects the diagnosis of breast lesions. AJR Am J Roentgenol. 2011;196:730–736. doi: 10.2214/AJR.10.4654.
    1. Berg WA, Blume JD, Cormack JB, Mendelson EB. Operator dependence of physician-performed whole-breast US: lesion detection and characterization. Radiology. 2006;241:355–365. doi: 10.1148/radiol.2412051710.
    1. Jaggi-Wickes C, Brasier-Lutz P, Schaedelin S, Burian R, Schoenenberger CA, Zanetti-Dallenbach R. Comparison of radial and meander-like breast ultrasound with respect to diagnostic accuracy and examination time. Arch Gynecol Obstet. 2020;301:1533–1541. doi: 10.1007/s00404-020-05554-x.
    1. Bi-Rads-Atlas® (2003) American College of Radiology, BI-RADS Atlas®, Breast Imaging Reporting and Data Systems.
    1. Landis JR, Koch GG. The measurement of observer agreement for categorical data. Biometrics. 1977;33:159–174. doi: 10.2307/2529310.
    1. Streiner DLNGR. Health Measurement Scales. A practical guide to their development and use: Oxford University Press; 2008.
    1. Cicchetti DV. Guidelines, Criteria, and Rules of Thumb for Evaluating Normed and Standardized Assessment Instruments in Psychology. Psychol Assess. 1994;6:284–290. doi: 10.1037/1040-3590.6.4.284.
    1. Madjar H, Ohlinger R, Mundinger A, Watermann D, Frenz JP, Bader W, Schulz-Wendtland R, Degenhardt F. BI-RADS-analogue DEGUM criteria for findings in breast ultrasound–consensus of the DEGUM Committee on Breast Ultrasound. Ultraschall Med. 2006;27:374–379. doi: 10.1055/s-2006-926943.
    1. Berg WA, Blume JD, Cormack JB, Mendelson EB, Madsen EL, Investigators A. Lesion detection and characterization in a breast US phantom: results of the ACRIN 6666 Investigators. Radiology. 2006;239:693–702. doi: 10.1148/radiol.2393051069.
    1. Yun G, Kim SM, Yun B, Ahn HS, Jang M. Reliability of automated versus handheld breast ultrasound examinations of suspicious breast masses. Ultrasonography. 2019;38:264–271. doi: 10.14366/usg.18055.
    1. Vourtsis A, Kachulis A. The performance of 3D ABUS versus HHUS in the visualisation and BI-RADS characterisation of breast lesions in a large cohort of 1,886 women. Eur Radiol. 2018;28:592–601. doi: 10.1007/s00330-017-5011-9.
    1. Barr RG, Devita R, Destounis S, Manzoni F, De Silvestri A, Tinelli C. Agreement Between an Automated Volume Breast Scanner and Handheld Ultrasound for Diagnostic Breast Examinations. J Ultrasound Med. 2017;36:2087–2092. doi: 10.1002/jum.14248.
    1. Ackermann S, Schoenenberger CA, Zanetti-Dallenbach R. Clinical Data as an Adjunct to Ultrasound Reduces the False-Negative Malignancy Rate in BI-RADS 3 Breast Lesions. Ultrasound Int Open. 2016;2:E83–89. doi: 10.1055/s-0042-110657.

Source: PubMed

3
Prenumerera