Azithromycin versus placebo for the treatment of HIV-associated chronic lung disease in children and adolescents (BREATHE trial): study protocol for a randomised controlled trial

Carmen Gonzalez-Martinez, Katharina Kranzer, Grace McHugh, Elizabeth L Corbett, Hilda Mujuru, Mark P Nicol, Sarah Rowland-Jones, Andrea M Rehman, Tore J Gutteberg, Trond Flaegstad, Jon O Odland, Rashida A Ferrand, BREATHE study team, Tsitsi Bandason, Pauline Cavanagh, Ethel Dauya, Edith Majonga, Beauty Makamure, Gugulethu Newton Mapurisa, Slee Mbhele, Brewster Wisdom Moyo, Lucky Gift Ngwira, Jamie Rylance, Victoria Simms, Evgeniya Sovershaeva, Helen Anne Weiss, Louis-Marie Yindom, Carmen Gonzalez-Martinez, Katharina Kranzer, Grace McHugh, Elizabeth L Corbett, Hilda Mujuru, Mark P Nicol, Sarah Rowland-Jones, Andrea M Rehman, Tore J Gutteberg, Trond Flaegstad, Jon O Odland, Rashida A Ferrand, BREATHE study team, Tsitsi Bandason, Pauline Cavanagh, Ethel Dauya, Edith Majonga, Beauty Makamure, Gugulethu Newton Mapurisa, Slee Mbhele, Brewster Wisdom Moyo, Lucky Gift Ngwira, Jamie Rylance, Victoria Simms, Evgeniya Sovershaeva, Helen Anne Weiss, Louis-Marie Yindom

Abstract

Background: Human immunodeficiency virus (HIV)-related chronic lung disease (CLD) among children is associated with substantial morbidity, despite antiretroviral therapy. This may be a consequence of repeated respiratory tract infections and/or dysregulated immune activation that accompanies HIV infection. Macrolides have anti-inflammatory and antimicrobial properties, and we hypothesised that azithromycin would reduce decline in lung function and morbidity through preventing respiratory tract infections and controlling systemic inflammation.

Methods/design: We are conducting a multicentre (Malawi and Zimbabwe), double-blind, randomised controlled trial of a 12-month course of weekly azithromycin versus placebo. The primary outcome is the mean change in forced expiratory volume in 1 second (FEV1) z-score at 12 months. Participants are followed up to 18 months to explore the durability of effect. Secondary outcomes are FEV1 z-score at 18 months, time to death, time to first acute respiratory exacerbation, number of exacerbations, number of hospitalisations, weight for age z-score at 12 and 18 months, number of adverse events, number of malaria episodes, number of bloodstream Salmonella typhi infections and number of gastroenteritis episodes. Participants will be followed up 3-monthly, and lung function will be assessed every 6 months. Laboratory substudies will be done to investigate the impact of azithromycin on systemic inflammation and on development of antimicrobial resistance as well as impact on the nasopharyngeal, lung and gut microbiome.

Discussion: The results of this trial will be of clinical relevance because there are no established guidelines on the treatment and management of HIV-associated CLD in children in sub-Saharan Africa, where 80% of the world's HIV-infected children live and where HIV-associated CLD is highly prevalent.

Trial registration: ClinicalTrials.gov, NCT02426112 . Registered on 21 April 2015.

Keywords: Africa; Azithromycin; Children; Chronic lung disease; FEV1; HIV; Obliterative bronchiolitis.

Conflict of interest statement

Ethics approval and consent to participate

Written informed consent by the participants’ guardians and assent will be obtained from participants aged younger than 18 years of age using an age-appropriate assent form before enrolment. Participants older than 18 years of age will be able to consent independently. The trial was approved by the London School of Hygiene and Tropical Medicine Ethics Committee (reference 8818) on 3 June 2015; by the Harare Central Hospital Ethics Committee on 5 October 2015; by the Medical Research Council of Zimbabwe (reference MRCZ/A/1946) on 24 May 2016; by the College of Medicine Research Ethics Committee Malawi (reference P.04/15/1719) on 7 August 2015; by the Medical Committee for Medical and Health Research Ethics, Northern Norway (reference 2015/1650) on 18 September 2015; and by the University of Cape Town Ethics Committee (reference 754/2015) on 30 June 2016. The University of Oxford did not require additional approval. Approval for conducting the clinical trial and for importation of the study investigational products was obtained from the Medicines Control Authority of Zimbabwe (26 January 2016; reference B/279/5/14/2016) and from the Pharmacy, Medicines and Poisons Board Malawi (9 March 2016; reference PMPB/CTRC/III/76).

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Figures

Fig. 1
Fig. 1
Schedule of trial procedures. ALT Alanine aminotransferase, ECG Echocardiography, HIV Human immunodeficiency virus, TB Tuberculosis
Fig. 2
Fig. 2
Sample size calculations. FEV1 Forced expiratory volume in 1 second

References

    1. Weber HC, Gie RP, Cotton MF. The challenge of chronic lung disease in HIV-infected children and adolescents. J Int AIDS Soc. 2013;16:18633. doi10.7448/IAS.16.1.18633.
    1. Rylance J, Meghji J, Miller RF, Ferrand RA. Global considerations in human immunodeficiency virus-associated respiratory disease. Semin Respir Crit Care Med. 2016;37(2):166–80. doi:10.1055/s-0036-1572555.
    1. Desai SR, Copley SJ, Barker RD, et al. Chest radiography patterns in 75 adolescents with vertically-acquired human immunodeficiency virus (HIV) infection. Clin Radiol. 2011;66(3):257–63. doi:10.1016/j.crad.2010.10.009.
    1. Ferrand RA, Desai SR, Hopkins C, et al. Chronic lung disease in adolescents with delayed diagnosis of vertically acquired HIV infection. Clin Infect Dis. 2012;55(1):145–52. doi:10.1093/cid/cis271.
    1. Mwalukomo T, Rylance SJ, Webb EL, et al. Clinical characteristics and lung function in older children vertically infected with human immunodeficiency virus in Malawi. J Pediatric Infect Dis Soc. 2016;5(2):161–9. doi:10.1093/jpids/piv045.
    1. Rylance J, McHugh G, Metcalfe J, et al. Chronic lung disease in HIV-infected children established on antiretroviral therapy. AIDS. 2016;30(18):2795–2803. doi: 10.1097/QAD.0000000000001249.
    1. Githinji LN, Gray DM, Hlengwa S, Myer L, Zar HJ. Lung function in South African adolescents infected perinatally with HIV and treated long-term with antiretroviral therapy. Ann Am Thorac Soc. 2017;14(5):722–9. doi:10.1513/AnnalsATS.201612-1018OC.
    1. Attia EF, Weiss NS, Maleche Obimbo E, McGrath CJ, Cagle A, West TE, El Antouny NG, Attwa M, Crothers K, Chung MH. Risk factors for hypoxia and tachypnea among adolescents with vertically-acquired HIV in Nairobi. Pediatr Infect Dis J. 2017;36(4):e93–7. doi:10.1097/INF.0000000000001453.
    1. Peacock-Villada E, Richardson BA, John-Stewart GC. Post-HAART outcomes in pediatric populations: comparison of resource-limited and developed countries. Pediatrics. 2011;127(2):e423–41. doi:10.1542/peds.2009-701.
    1. Du Plessis AM, Andronikou S, Zar H. High resolution computed tomography for chronic small airway disease in HIV infected adolescents. Presented at the 53rd annual Pediatric Radiology Conference, Davos; 2017.
    1. Moonnumakal SP, Fan LL. Bronchiolitis obliterans in children. Curr Opin Pediatr. 2008;20(3):272–8. doi:10.1097/MOP.0b013e3282ff62e9.
    1. Fischer GB, Sarria EE, Mattiello R, Mocelin HT, Castro-Rodriguez JA. Post infectious bronchiolitis obliterans in children. Paediatr Respir Rev. 2010;11(4):233–9. doi:10.1016/j.prrv.2010.07.005.
    1. Haddad IY. Stem cell transplantation and lung dysfunction. Curr Opin Pediatr. 2013;25(3):350–6. doi:10.1097/MOP.0b013e328360c317.
    1. Uhlving HH, Buchvald F, Heilmann CJ, Nielsen KG, Gormsen M, Muller KG. Bronchiolitis obliterans after allo-SCT: clinical criteria and treatment options. Bone Marrow Transplant. 2012;47(8):1020–9. doi:10.1038/bmt.2011.161.
    1. Tenorio AR, Zheng Y, Bosch RJ, et al. Soluble markers of inflammation and coagulation but not T-cell activation predict non-AIDS-defining morbid events during suppressive antiretroviral treatment. J Infect Dis. 2014;210(8):1248–59. doi:10.1093/infdis/jiu254.
    1. Macatangay BJ, Yang M, Sun X, et al. Brief report: changes in levels of inflammation after antiretroviral treatment during early HIV infection in AIDS Clinical Trials Group Study A5217. J Acquir Immune Defic Syndr. 2017;75(1):137–41. doi:10.1097/QAI.0000000000001320.
    1. Sereti I, Krebs SJ, Phanuphak N, et al. Persistent, albeit reduced, chronic inflammation in persons starting antiretroviral therapy in acute HIV infection. Clin Infect Dis. 2017;64(2):124–31. doi:10.1093/cid/ciw683.
    1. Ratjen F, Rjabko O, Kremens B. High-dose corticosteroid therapy for bronchiolitis obliterans after bone marrow transplantation in children. Bone Marrow Transplant. 2005;36(2):135–138. doi: 10.1038/sj.bmt.1705026.
    1. Kingah PL, Muma G, Soubani A. Azithromycin improves lung function in patients with post-lung transplant bronchiolitis obliterans syndrome: a meta-analysis. Clin Transplant. 2014;28(8):906–10. doi:10.1111/ctr.12401.
    1. Lam DC, Lam B, Wong MK, et al. Effects of azithromycin in bronchiolitis obliterans syndrome after hematopoietic SCT—a randomized double-blinded placebo-controlled study. Bone Marrow Transplant. 2011;46(12):1551–6. doi:10.1038/bmt.2011.1.
    1. Wong C, Jayaram L, Karalus N, et al. Azithromycin for prevention of exacerbations in non-cystic fibrosis bronchiectasis (EMBRACE): a randomised, double-blind, placebo-controlled trial. Lancet. 2012;380(9842):660–7. doi:10.1016/S0140-6736(12)60953-2.
    1. Cramer CL, Patterson A, Alchakaki A, Soubani AO. Immunomodulatory indications of azithromycin in respiratory disease: a concise review for the clinician. Postgrad Med. 2017;129(5):493–9. doi:10.1080/00325481.2017.1285677.
    1. Verleden GM, Vanaudenaerde BM, Dupont LJ, Van Raemdonck DE. Azithromycin reduces airway neutrophilia and interleukin-8 in patients with bronchiolitis obliterans syndrome. Am J Respir Crit Care Med. 2006;174(5):566–570. doi: 10.1164/rccm.200601-071OC.
    1. Liu Y, Pu Y, Li D, Zhou L, Wan L. Azithromycin ameliorates airway remodeling via inhibiting airway epithelium apoptosis. Life Sci. 2017;170:1–8. 10.1016/j.lfs.2016.11.024.
    1. Southern KW, Barker PM, Solis-Moya A, Patel L. Macrolide antibiotics for cystic fibrosis. Cochrane Database Syst Rev. 2012;11:CD002203. doi:10.1002/14651858.CD002203.pub4.
    1. Valery PC, Morris PS, Byrnes CA, et al. Long-term azithromycin for indigenous children with non-cystic-fibrosis bronchiectasis or chronic suppurative lung disease (Bronchiectasis Intervention Study): a multicentre, double-blind, randomised controlled trial. Lancet Respir Med. 2013;1(8):610–20. doi:10.1016/S2213-600(13)70185-1.
    1. Li YN, Liu L, Qiao HM, Cheng H, Cheng HJ. Post-infectious bronchiolitis obliterans in children: a review of 42 cases. BMC Pediatr. 2014;14:238. doi:10.1186/471-2431-14-238.
    1. Uzun S, Djamin RS, Kluytmans JA, et al. Azithromycin maintenance treatment in patients with frequent exacerbations of chronic obstructive pulmonary disease (COLUMBUS): a randomised, double-blind, placebo-controlled trial. Lancet Respir Med. 2014;2(5):361–8. doi:10.1016/S2213-600(14)70019-0.
    1. Kahan BC, Morris TP. Analysis of multicentre trials with continuous outcomes: when and how should we account for centre effects? Stat Med. 2013;32(7):1136–1149. doi: 10.1002/sim.5667.
    1. International Conference on Harmonisation Guideline for International conference on harmonisation of technical requirements for registration of pharmaceuticals for human use. Guideline for Good Clinical Practice E6 (R1). ICH Harmonised Tripartite Guideline. 1996. . Accessed 27 Mar 2017.
    1. Chan AW, Tetzlaff JM, Altman DG, Laupacis A, Gøtzsche PC, Krleža-Jerić K, Hróbjartsson A, Mann H, Dickersin K, Berlin J, Doré C, Parulekar W, Summerskill W, Groves T, Schulz K, Sox H, Rockhold FW, Rennie D, Moher D. SPIRIT 2013 statement: defining standard protocol items for clinical trials. Ann Intern Med. 2013;158:200–7. doi:10.7326/0003-4819-158-3-201302050-00583.

Source: PubMed

3
Prenumerera