Interleukin-7 and immune reconstitution in cancer patients: a new paradigm for dramatically increasing overall survival

Michel Morre, Stéphanie Beq, Michel Morre, Stéphanie Beq

Abstract

Although great effort is being expended in the development of cancer immunotherapies, it is surprising that global lymphopenia and its various dimensions are not being systematically assessed in cancer patients. The incident pathologies associated with various immunosuppressed conditions such as those found in HIV infection have taught us that measuring various T cell populations including CD4 provides the clinician with a reliable measure for gauging the risk of cancer and opportunistic infections. Importantly, recent data emphasize the key link between lymphocyte T cell counts and overall survival in cancer patients receiving chemotherapy. Treatment of immunocompromised patients with interleukin-7 (IL-7), a critical growth and homeostatic factor for T cells, has been shown to produce a compelling profile of T cell reconstitution. The clinical results of this investigational therapy confirm data obtained from numerous preclinical studies and demonstrate the long-term stability of this immune reconstitution, not only on CD4 but also on CD8 T cells, involving recent thymic emigrants as well as naive, memory, and central memory T cells. Furthermore, IL-7 therapy also contributes to restoration of a broadened diversity of the T cell repertoire as well as to migration of these cells to lymph nodes and tissues. All these properties support the initiation of new clinical studies aimed at reconstituting the immune system of cancer patients before or immediately after chemotherapy in order to demonstrate a potentially profound increase in overall survival.

Figures

Fig. 1
Fig. 1
IL-7 a key factor in thymopoiesis and T cell periperal homeostasis. IL-7 receptor is expressed on common lymphoid progenitors (CLP) cells in the bone marrow and is essential for maintenance or progenitor pool for both B and T cells. During T cell development in the thymus IL-7 is involved at different stages of T cell proliferation and positive/negative selection. Following thymic export, recent emigrant T cells (RTE) are incorporated to the periphery. In the periphery, IL-7 is a major anti-apoptotic/survival factor of T cells through elevation of Bcl-2 expression. It also controls homeostatic and antigen-driven expansion of both CD4 and CD8 T cells. Its capacity to augment the immune response to weak or low affinity antigens will lead to the recognition of tumoral antigens. The Th1 response directly target tumoral cells. Following antigen driven expansion of activated T cells, a small population of effector cells become long-lived memory T cells expressing high levels of IL-7 receptor, the long-lasting anti-tumoral response. IL-7 by controlling thymopoiesis and peripheral homeostasis as well as antigen response is a critical factor for the immune system
Fig. 2
Fig. 2
Possible mechanisms of action of IL-7 immunotherapy in oncology. IL-7 immunotherapy increases both CD4 and CD8 T cell subsets (Levy et al.). In non-lymphopenic recipients, this increase is transient and return to baseline (unpublished data CONVERT study); while in lymphopenic patients, a progressive restoration was observable with a sustained higher T cell count at 1 year post-treatment [74]. T-lymphocyte infiltration was demonstrated in lymph nodes, gut, and skin lymphoid tissue [60] in primates following IL-7 treatment. The cytokine lead to an upregulation of homing chemokine receptors on T cells including CXCR4, CCR6, and CCR9 coupled with increased chemokine levels in tissues (CCL19, CCL20, CCL21, and CCL25) and plasma (CCL3, CCL4, and CXCL12). The teams of Li et al. and Pellegrini et al., elegantly demonstrated that IL-7 treatment of mice induces a massive T cell infiltration in murine tumor leading to an enhanced anti-tumor protection correlated with an increased number of activated dendritic cells [61, 62]. Moreover, IL-7 will decrease the immunosuppressive environment in the tumor by decreasing TGFbeta secretion a key cytokine for immunosuppressive Treg. By increasing the number of tumor reactive T including cells with a memory phenotype cells and decreasing immunosuppression will result in a persistent and long-lasting anti-tumor T cell response
Fig. 3
Fig. 3
Impact of IL-7 on T cell repertoire. IL-7 has a major role in preserving the naïve T cell repertoire by increasing thymopoiesis and cell viability in absence of antigen stimulation. Thymopoiesis increase was demonstrated by the increase of TRECs following IL-7 immunotherapy in HIV patients. By inducing a higher rate of thymocyte proliferation, the cytokine generates more diverse TCR rearrangement contributing to an increase of RTE and naive T cell subsets in the periphery. An increase of the T cell pool diversity was demonstrated by TCR beta combinational diversity in HIV-infected patients treated with IL-7(manuscript in preparation INSPIRE 1 study). Peripheral expansion of pre-existing T cells probably contributes to the TCR repertoire diversification observation. By increasing thymus activity, output, and peripheral expansion of produced cells IL-7 potentially increase T cell repertoire diversity
Fig. 4
Fig. 4
Clinical trial design involving IL-7 immunotherapy. As lymphopenia was identified as a prognosis factor for overall survival and tumor progression in patients with advanced cancer, cycles of IL-7 could be used before chemotherapy intervention to restore global immunity. Two different types of cancer are envisaged here: solid tumor and bone marrow transplantation. In metastatic patients presenting a chemotherapy-induced lymphopenia, cycle of IL-7 before or during chemotherapy will counteract the lymphopenia effect and preserve T cell survival. Following T cell depletion in bone marrow transplanted patients, multiple cycles of IL-7 will be necessary to recover a competent immune system and reach a less life-threatening window

References

    1. Mackall CL, Fry TJ, Gress RE. Harnessing the biology of IL-7 for therapeutic application. Nat Rev Immunol. 2011;11(5):330–342. doi: 10.1038/nri2970.
    1. Vesely MD, Kershaw MH, Schreiber RD, Smyth MJ. Natural innate and adaptive immunity to cancer. Annu Rev Immunol. 2011;29:235–271. doi: 10.1146/annurev-immunol-031210-101324.
    1. Mackall CL, Fleisher TA, Brown MR, Andrich MP, Chen CC, Feuerstein IM, Magrath IT, Wexler LH, Dimitrov DS, Gress RE. Distinctions between CD8+ and CD4+ T-cell regenerative pathways result in prolonged T-cell subset imbalance after intensive chemotherapy. Blood. 1997;89(10):3700–3707.
    1. Mackall CL, Fleisher TA, Brown MR, Magrath IT, Shad AT, Horowitz ME, Wexler LH, Adde MA, McClure LL, Gress RE. Lymphocyte depletion during treatment with intensive chemotherapy for cancer. Blood. 1994;84(7):2221–2228.
    1. Blay JY, Chauvin F, Le Cesne A, Anglaret B, Bouhour D, Lasset C, Freyer G, Philip T, Biron P. Early lymphopenia after cytotoxic chemotherapy as a risk factor for febrile neutropenia. J Clin Oncol. 1996;14(2):636–643.
    1. Borg C, Ray-Coquard I, Philip I, Clapisson G, Bendriss-Vermare N, Menetrier-Caux C, Sebban C, Biron P, Blay JY. CD4 lymphopenia as a risk factor for febrile neutropenia and early death after cytotoxic chemotherapy in adult patients with cancer. Cancer. 2004;101(11):2675–2680. doi: 10.1002/cncr.20688.
    1. Ray-Coquard I, Borg C, Bachelot T, Sebban C, Philip I, Clapisson G, Le Cesne A, Biron P, Chauvin F, Blay JY. Baseline and early lymphopenia predict for the risk of febrile neutropenia after chemotherapy. Br J Cancer. 2003;88(2):181–186. doi: 10.1038/sj.bjc.6600724.
    1. Bedimo RJ, McGinnis KA, Dunlap M, Rodriguez-Barradas MC, Justice AC. Incidence of non-AIDS-defining malignancies in HIV-infected versus noninfected patients in the HAART era: impact of immunosuppression. J Acquir Immune Defic Syndr. 2009;52(2):203–208. doi: 10.1097/QAI.0b013e3181b033ab.
    1. Marin B, Thiebaut R, Bucher HC, Rondeau V, Costagliola D, Dorrucci M, Hamouda O, Prins M, Walker S, Porter K, Sabin C, Chene G. Non-AIDS-defining deaths and immunodeficiency in the era of combination antiretroviral therapy. AIDS. 2009;23(13):1743–1753. doi: 10.1097/QAD.0b013e32832e9b78.
    1. Smith C, Sabin CA, Lundgren JD, Thiebaut R, Weber R, Law M, Monforte A, Kirk O, Friis-Moller N, Phillips A, Reiss P, El Sadr W, Pradier C, Worm SW. Factors associated with specific causes of death amongst HIV-positive individuals in the D:A:D Study. AIDS. 2010;24(10):1537–1548.
    1. Monforte A, Abrams D, Pradier C, Weber R, Reiss P, Bonnet F, Kirk O, Law M, De Wit S, Friis-Moller N, Phillips AN, Sabin CA, Lundgren JD. HIV-induced immunodeficiency and mortality from AIDS-defining and non-AIDS-defining malignancies. AIDS. 2008;22(16):2143–2153. doi: 10.1097/QAD.0b013e3283112b77.
    1. Chen LJ, Sun J, Wu HY, Zhou SM, Tan Y, Tan M, Shan BE, Lu BF, Zhang XG. B7-H4 expression associates with cancer progression and predicts patient's survival in human esophageal squamous cell carcinoma. Cancer Immunol Immunother. 2011;60(7):1047–1055. doi: 10.1007/s00262-011-1017-3.
    1. Schreiber RD, Old LJ, Smyth MJ. Cancer immunoediting: integrating immunity's roles in cancer suppression and promotion. Science. 2011;331(6024):1565–1570. doi: 10.1126/science.1203486.
    1. Pasqual N, Gallagher M, Aude-Garcia C, Loiodice M, Thuderoz F, Demongeot J, Ceredig R, Marche PN, Jouvin-Marche E. Quantitative and qualitative changes in V-J alpha rearrangements during mouse thymocytes differentiation: implication for a limited T cell receptor alpha chain repertoire. J Exp Med. 2002;196(9):1163–1173. doi: 10.1084/jem.20021074.
    1. Achhra AC, Amin J, Law MG, Emery S, Gerstoft J, Gordin FM, Vjecha MJ, Neaton JD, Cooper DA. Immunodeficiency and the risk of serious clinical endpoints in a well studied cohort of treated HIV-infected patients. AIDS. 2010;24(12):1877–1886. doi: 10.1097/QAD.0b013e32833b1b26.
    1. Guadalupe M, Reay E, Sankaran S, Prindiville T, Flamm J, McNeil A, Dandekar S. Severe CD4+ T-cell depletion in gut lymphoid tissue during primary human immunodeficiency virus type 1 infection and substantial delay in restoration following highly active antiretroviral therapy. J Virol. 2003;77(21):11708–11717. doi: 10.1128/JVI.77.21.11708-11717.2003.
    1. Brenchley JM, Schacker TW, Ruff LE, Price DA, Taylor JH, Beilman GJ, Nguyen PL, Khoruts A, Larson M, Haase AT, Douek DC. CD4+ T cell depletion during all stages of HIV disease occurs predominantly in the gastrointestinal tract. J Exp Med. 2004;200(6):749–759. doi: 10.1084/jem.20040874.
    1. Zeng M, Smith AJ, Wietgrefe SW, Southern PJ, Schacker TW, Reilly CS, Estes JD, Burton GF, Silvestri G, Lifson JD, Carlis JV, Haase AT. Cumulative mechanisms of lymphoid tissue fibrosis and T cell depletion in HIV-1 and SIV infections. J Clin Invest. 2011;121(3):998–1008. doi: 10.1172/JCI45157.
    1. Grulich AE, van Leeuwen MT, Falster MO, Vajdic CM. Incidence of cancers in people with HIV/AIDS compared with immunosuppressed transplant recipients: a meta-analysis. Lancet. 2007;370(9581):59–67. doi: 10.1016/S0140-6736(07)61050-2.
    1. Dauby N, De Wit S, Delforge M, Necsoi VC, Clumeck N. Characteristics of non-AIDS-defining malignancies in the HAART era: a clinico-epidemiological study. J Int AIDS Soc. 2011;14:16. doi: 10.1186/1758-2652-14-16.
    1. Ray-Coquard I, Cropet C, Van Glabbeke M, Sebban C, Le Cesne A, Judson I, Tredan O, Verweij J, Biron P, Labidi I, Guastalla JP, Bachelot T, Perol D, Chabaud S, Hogendoorn PC, Cassier P, Dufresne A, Blay JY. Lymphopenia as a prognostic factor for overall survival in advanced carcinomas, sarcomas, and lymphomas. Cancer Res. 2009;69(13):5383–5391. doi: 10.1158/0008-5472.CAN-08-3845.
    1. Porrata LF, Ristow K, Habermann T, Inwards DJ, Micallef IN, Markovic SN. Predicting survival for diffuse large B-cell lymphoma patients using baseline neutrophil/lymphocyte ratio. Am J Hematol. 2010;85(11):896–899. doi: 10.1002/ajh.21849.
    1. Ceze N, Thibault G, Goujon G, Viguier J, Watier H, Dorval E, Lecomte T. Pre-treatment lymphopenia as a prognostic biomarker in colorectal cancer patients receiving chemotherapy. Cancer Chemother Pharmacol. 2011;68(5):1305–1313. doi: 10.1007/s00280-011-1610-3.
    1. Lim SM, Kim YR, Park JS, Park HS, Lim JY, Cho JY (2011) The prognositc value of lymphopenia in advanced gastric cancer. ASCO Meeting Abstracts 29(15_suppl):e14500
    1. Desposorio CR, Hurtado de Mendoza F, Falcon SG, Capellino AR, Lujan R, Morales D, Castillo JJ, Beltran BE (2011) Lymphopenia as a predictive factor of responsiveness to preoperative treatment in patients with locally advanced breast cancer. ASCO Meeting Abstracts 29(15_suppl):e21096
    1. Capellino AR, Desposorio CR, Hurtado de Mendoza F, Falcon SG, Beltran BE, Lujan R, Morales D, Castillo JJ (2011) Lymphopenia and breast cancer subtypes as prognostic factors in patients with locally advanced breast cancer. ASCO Meeting Abstracts 29(15_suppl):e21100
    1. Peron J, Ray-Coquard IL, Labidi-Galy SI, Heudel P, Clapisson G, Cassier PA, Philip I, Borg C, Tredan O, Bachelot TD, Sebban C, Ghesquieres H, Menetrier-Caux C, Caux C, Biron P, Blay J (2011) Association of CD4 lymphopenia with survival in patients with advanced cancer. ASCO Meeting Abstracts 29(15_suppl):e21145
    1. Miwa H. Identification and prognostic implications of tumor infiltrating lymphocytes—a review. Acta Med Okayama. 1984;38(3):215–218.
    1. Hsu MM. Local infiltration of T-lymphocyte subsets as a prognostic indicator in patients with nasopharyngeal carcinoma. Ear Nose Throat J. 1990;69(8):543–547.
    1. Tsujihashi H, Uejima S, Akiyama T, Kurita T. Immunohistochemical detection of tissue-infiltrating lymphocytes in bladder tumors. Urol Int. 1989;44(1):5–9. doi: 10.1159/000281440.
    1. Fridman WH, Galon J, Dieu-Nosjean MC, Cremer I, Fisson S, Damotte D, Pages F, Tartour E, Sautes-Fridman C. Immune infiltration in human cancer: prognostic significance and disease control. Curr Top Microbiol Immunol. 2011;344:1–24. doi: 10.1007/82_2010_46.
    1. Jochems C, Schlom J. Tumor-infiltrating immune cells and prognosis: the potential link between conventional cancer therapy and immunity. Exp Biol Med (Maywood) 2011;236(5):567–579. doi: 10.1258/ebm.2011.011007.
    1. Pages F, Galon J, Dieu-Nosjean MC, Tartour E, Sautes-Fridman C, Fridman WH. Immune infiltration in human tumors: a prognostic factor that should not be ignored. Oncogene. 2010;29(8):1093–1102. doi: 10.1038/onc.2009.416.
    1. Sorbye SW, Kilvaer T, Valkov A, Donnem T, Smeland E, Al-Shibli K, Bremnes RM, Busund LT. Prognostic impact of lymphocytes in soft tissue sarcomas. PLoS One. 2011;6(1):e14611. doi: 10.1371/journal.pone.0014611.
    1. Pages F, Berger A, Camus M, Sanchez-Cabo F, Costes A, Molidor R, Mlecnik B, Kirilovsky A, Nilsson M, Damotte D, Meatchi T, Bruneval P, Cugnenc PH, Trajanoski Z, Fridman WH, Galon J. Effector memory T cells, early metastasis, and survival in colorectal cancer. N Engl J Med. 2005;353(25):2654–2666. doi: 10.1056/NEJMoa051424.
    1. Hodi FS, Dranoff G. The biologic importance of tumor-infiltrating lymphocytes. J Cutan Pathol. 2010;37(Suppl 1):48–53. doi: 10.1111/j.1600-0560.2010.01506.x.
    1. Kim HI, Kim H, Cho HW, Kim SY, Song KJ, Hyung WJ, Park CG, Kim CB (2011) The ratio of intra-tumoral regulatory T cells (Foxp3+)/helper T cells (CD4+) is a prognostic factor and associated with recurrence pattern in gastric cardia cancer. J Surg Oncol
    1. Ascierto PA, Simeone E, Sznol M, Fu YX, Melero I. Clinical experiences with anti-CD137 and anti-PD1 therapeutic antibodies. Semin Oncol. 2010;37(5):508–516. doi: 10.1053/j.seminoncol.2010.09.008.
    1. Kline J, Gajewski TF. Clinical development of mAbs to block the PD1 pathway as an immunotherapy for cancer. Curr Opin Investig Drugs. 2010;11(12):1354–1359.
    1. Goodwin RG, Namen A. The cloning and characterization of interleukin7. Year Immunol. 1989;6:127.
    1. Fry TJ, Mackall C. Interleukin-7: from bench to clinic. Blood. 2002;99(11):3892–3904. doi: 10.1182/blood.V99.11.3892.
    1. Borghesi LA, Yamashita Y, Kincade PW. Heparan sulfate proteoglycans mediate interleukin-7-dependent B lymphopoiesis. Blood. 1999;93(1):140–148.
    1. Peschon JJ, Morrissey PJ, Grabstein KH, Ramsdell FJ, Maraskovsky E, Gliniak BC, Park LS, Ziegler SF, Williams DE, Ware CB, Meyer JD, Davison BL. Early lymphocyte expansion is severely impaired in interleukin 7 receptor-deficient mice. J Exp Med. 1994;180(5):1955–1960. doi: 10.1084/jem.180.5.1955.
    1. von Freeden-Jeffry U, Vieira P, Lucian LA, McNeil T, Burdach SE, Murray R. Lymphopenia in interleukin (IL)-7 gene-deleted mice identifies IL-7 as a nonredundant cytokine. J Exp Med. 1995;181(4):1519–1526. doi: 10.1084/jem.181.4.1519.
    1. Plum J, De Smedt M, Leclercq G, Verhasselt B, Vandekerckhove B. Interleukin-7 is a critical growth factor in early human T-cell development. Blood. 1996;88(11):4239–4245.
    1. Li J, Nara H, Rahman M, Juliana FM, Araki A, Asao H. Impaired IL-7 signaling may explain a case of atypical JAK3-SCID. Cytokine. 2010;49(2):221–228. doi: 10.1016/j.cyto.2009.09.009.
    1. Puel A, Ziegler SF, Buckley RH, Leonard WJ. Defective IL7R expression in T(-)B(+)NK(+) severe combined immunodeficiency. Nat Genet. 1998;20(4):394–397. doi: 10.1038/3877.
    1. Roifman CM, Zhang J, Chitayat D, Sharfe N. A partial deficiency of interleukin-7R alpha is sufficient to abrogate T-cell development and cause severe combined immunodeficiency. Blood. 2000;96(8):2803–2807.
    1. Rossberg S, Schwarz K, Meisel C, Holzhauer S, Kuhl J, Ebell W, Wahn V, von Bernuth H. Delayed onset of (severe) combined immunodeficiency (S)CID (T-B + NK+): complete IL-7 receptor deficiency in a 22 months old girl. Klin Padiatr. 2009;221(6):339–343. doi: 10.1055/s-0029-1239537.
    1. Fry TJ, Mackall CL. Interleukin-7: master regulator of peripheral T-cell homeostasis? Trends Immunol. 2001;22(10):564–571. doi: 10.1016/S1471-4906(01)02028-2.
    1. Fry TJ, Connick E, Falloon J, Lederman MM, Liewehr DJ, Spritzler J, Steinberg SM, Wood LV, Yarchoan R, Zuckerman J, Landay A, Mackall CL. A potential role for interleukin-7 in T-cell homeostasis. Blood. 2001;97(10):2983–2990. doi: 10.1182/blood.V97.10.2983.
    1. Napolitano LA, Grant RM, Deeks SG, Schmidt D, De Rosa SC, Herzenberg LA, Herndier BG, Andersson J, McCune JM. Increased production of IL-7 accompanies HIV-1-mediated T-cell depletion: implications for T-cell homeostasis. Nat Med. 2001;7(1):73–79. doi: 10.1038/83381.
    1. Kittipatarin C, Khaled AR. Interlinking interleukin-7. Cytokine. 2007;39(1):75–83. doi: 10.1016/j.cyto.2007.07.183.
    1. Schluns KS, Kieper W, Jameson SC, Lefrançois L. Interleukin-7 mediates the homeostasis of naïve and memory CD8 T cells in vivo. Nat Immunol. 2000;1(5):426–432. doi: 10.1038/80868.
    1. Morrissey PJ, Conlon P, Braddy S, Williams DE, Namen AE, Mochizuki DY. Administration of IL-7 to mice with cyclophosphamide-induced lymphopenia accelerates lymphocyte repopulation. J Immunol. 1991;146(5):1547–1552.
    1. Alpdogan O, Schmaltz C, Muriglan SJ, Kappel BJ, Perales MA, Rotolo JA, Halm JA, Rich BE, van den Brink MR. Administration of interleukin-7 after allogeneic bone marrow transplantation improves immune reconstitution without aggravating graft-versus-host disease. Blood. 2001;98(7):2256–2265. doi: 10.1182/blood.V98.7.2256.
    1. Storek J, Gillespy T, 3rd, Lu H, Joseph A, Dawson MA, Gough M, Morris J, Hackman RC, Horn PA, Sale GE, Andrews RG, Maloney DG, Kiem HP. Interleukin-7 improves CD4 T-cell reconstitution after autologous CD34 cell transplantation in monkeys. Blood. 2003;101(10):4209–4218. doi: 10.1182/blood-2002-08-2671.
    1. Beq S, Nugeyre MT, Ho Tsong Fang R, Gautier D, Legrand R, Schmitt N, Estaquier J, Barre-Sinoussi F, Hurtrel B, Cheynier R, Israel N. IL-7 induces immunological improvement in SIV-infected rhesus macaques under antiviral therapy. J Immunol. 2006;176(2):914–922.
    1. Fry TJ, Moniuszko M, Creekmore S, Donohue SJ, Douek DC, Giardina S, Hecht TT, Hill BJ, Komschlies K, Tomaszewski J, Franchini G, Mackall CL. IL-7 therapy dramatically alters peripheral T-cell homeostasis in normal and SIV-infected nonhuman primates. Blood. 2003;101(6):2294–2299. doi: 10.1182/blood-2002-07-2297.
    1. Leone A, Rohankhedkar M, Okoye A, Legasse A, Axthelm MK, Villinger F, Piatak M, Jr, Lifson JD, Assouline B, Morre M, Picker LJ, Sodora DL. Increased CD4+ T cell levels during IL-7 administration of antiretroviral therapy-treated simian immunodeficiency virus-positive macaques are not dependent on strong proliferative responses. J Immunol. 2010;185(3):1650–1659. doi: 10.4049/jimmunol.0902626.
    1. Parker R, Dutrieux J, Beq S, Lemercier B, Rozlan S, Fabre-Mersseman V, Rancez M, Gommet C, Assouline B, Rance I, Lim A, Morre M, Cheynier R. Interleukin-7 treatment counteracts IFN-alpha therapy-induced lymphopenia and stimulates SIV-specific cytotoxic T lymphocyte responses in SIV-infected rhesus macaques. Blood. 2010;116(25):5589–5599. doi: 10.1182/blood-2010-03-276261.
    1. Henriques CM, Rino J, Nibbs RJ, Graham GJ, Barata JT. IL-7 induces rapid clathrin-mediated internalization and JAK3-dependent degradation of IL-7Ralpha in T cells. Blood. 2010;115(16):3269–3277. doi: 10.1182/blood-2009-10-246876.
    1. Beq S, Rozlan S, Gautier D, Parker R, Mersseman V, Schilte C, Assouline B, Rance I, Lavedan P, Morre M, Cheynier R. Injection of glycosylated recombinant simian IL-7 provokes rapid and massive T-cell homing in rhesus macaques. Blood. 2009;114(4):816–825. doi: 10.1182/blood-2008-11-191288.
    1. Li B, VanRoey MJ, Jooss K. Recombinant IL-7 enhances the potency of GM-CSF-secreting tumor cell immunotherapy. Clin Immunol. 2007;123(2):155–165. doi: 10.1016/j.clim.2007.01.002.
    1. Pellegrini M, Calzascia T, Elford AR, Shahinian A, Lin AE, Dissanayake D, Dhanji S, Nguyen LT, Gronski MA, Morre M, Assouline B, Lahl K, Sparwasser T, Ohashi PS, Mak TW. Adjuvant IL-7 antagonizes multiple cellular and molecular inhibitory networks to enhance immunotherapies. Nat Med. 2009;15(5):528–536. doi: 10.1038/nm.1953.
    1. Dillman RO. Cancer immunotherapy. Cancer Biother Radiopharm. 2011;26(1):1–64. doi: 10.1089/cbr.2010.0902.
    1. Abrams D, Levy Y, Losso MH, Babiker A, Collins G, Cooper DA, Darbyshire J, Emery S, Fox L, Gordin F, Lane HC, Lundgren JD, Mitsuyasu R, Neaton JD, Phillips A, Routy JP, Tambussi G, Wentworth D. Interleukin-2 therapy in patients with HIV infection. N Engl J Med. 2009;361(16):1548–1559. doi: 10.1056/NEJMoa0903175.
    1. Weiss L, Letimier FA, Carriere M, Maiella S, Donkova-Petrini V, Targat B, Benecke A, Rogge L, Levy Y. In vivo expansion of naive and activated CD4 + CD25 + FOXP3+ regulatory T cell populations in interleukin-2-treated HIV patients. Proc Natl Acad Sci U S A. 2010;107(23):10632–10637. doi: 10.1073/pnas.1000027107.
    1. Malek TR, Castro I. Interleukin-2 receptor signaling: at the interface between tolerance and immunity. Immunity. 2010;33(2):153–165. doi: 10.1016/j.immuni.2010.08.004.
    1. Fry TJ, Mackall CL. The many faces of IL-7: from lymphopoiesis to peripheral T cell maintenance. J Immunol. 2005;174(11):6571–6576.
    1. Menetrier-Caux C, Gobert M, Caux C. Differences in tumor regulatory T-cell localization and activation status impact patient outcome. Cancer Res. 2009;69(20):7895–7898. doi: 10.1158/0008-5472.CAN-09-1642.
    1. Suzuki H, Kundig TM, Furlonger C, Wakeham A, Timms E, Matsuyama T, Schmits R, Simard JJ, Ohashi PS, Griesser H, et al. Deregulated T cell activation and autoimmunity in mice lacking interleukin-2 receptor beta. Science. 1995;268(5216):1472–1476. doi: 10.1126/science.7770771.
    1. Kramer S, Schimpl A, Hunig T. Immunopathology of interleukin (IL) 2-deficient mice: thymus dependence and suppression by thymus-dependent cells with an intact IL-2 gene. J Exp Med. 1995;182(6):1769–1776. doi: 10.1084/jem.182.6.1769.
    1. Gagnon J, Chen XL, Forand-Boulerice M, Leblanc C, Raman C, Ramanathan S, Ilangumaran S. Increased antigen responsiveness of naive CD8 T cells exposed to IL-7 and IL-21 is associated with decreased CD5 expression. Immunol Cell Biol. 2010;88(4):451–460. doi: 10.1038/icb.2009.109.
    1. Melchionda F, Fry TJ, Milliron MJ, McKirdy MA, Tagaya Y, Mackall CL. Adjuvant IL-7 or IL-15 overcomes immunodominance and improves survival of the CD8+ memory cell pool. J Clin Invest. 2005;115(5):1177–1187.
    1. Palmer MJ, Mahajan VS, Chen J, Irvine DJ, Lauffenburger DA. Signaling thresholds govern heterogeneity in IL-7-receptor-mediated responses of naive CD8(+) T cells. Immunol Cell Biol. 2011;89(5):581–594. doi: 10.1038/icb.2011.5.
    1. Huang M, Sharma S, Zhu LX, Keane MP, Luo J, Zhang L, Burdick MD, Lin YQ, Dohadwala M, Gardner B, Batra RK, Strieter RM, Dubinett SM. IL-7 inhibits fibroblast TGF-beta production and signaling in pulmonary fibrosis. J Clin Invest. 2002;109(7):931–937.
    1. Takaku S, Terabe M, Ambrosino E, Peng J, Lonning S, McPherson JM, Berzofsky JA. Blockade of TGF-beta enhances tumor vaccine efficacy mediated by CD8(+) T cells. Int J Cancer. 2010;126(7):1666–1674.
    1. Terabe M, Ambrosino E, Takaku S, O'Konek JJ, Venzon D, Lonning S, McPherson JM, Berzofsky JA. Synergistic enhancement of CD8+ T cell-mediated tumor vaccine efficacy by an anti-transforming growth factor-beta monoclonal antibody. Clin Cancer Res. 2009;15(21):6560–6569. doi: 10.1158/1078-0432.CCR-09-1066.
    1. Levy Y, Lacabaratz C, Weiss L, Viard JP, Goujard C, Lelievre JD, Boue F, Molina JM, Rouzioux C, Avettand-Fenoel V, Croughs T, Beq S, Thiebaut R, Chene G, Morre M, Delfraissy JF. Enhanced T cell recovery in HIV-1-infected adults through IL-7 treatment. J Clin Invest. 2009;119(4):997–1007.
    1. Sportes C, Gress RE, Mackall CL. Perspective on potential clinical applications of recombinant human interleukin-7. Ann N Y Acad Sci. 2009;1182:28–38. doi: 10.1111/j.1749-6632.2009.05075.x.
    1. Sereti I, Dunham RM, Spritzler J, Aga E, Proschan MA, Medvik K, Battaglia CA, Landay AL, Pahwa S, Fischl MA, Asmuth DM, Tenorio AR, Altman JD, Fox L, Moir S, Malaspina A, Morre M, Buffet R, Silvestri G, Lederman MM. IL-7 administration drives T cell-cycle entry and expansion in HIV-1 infection. Blood. 2009;113(25):6304–6314. doi: 10.1182/blood-2008-10-186601.
    1. Sportes C, Hakim FT, Memon SA, Zhang H, Chua KS, Brown MR, Fleisher TA, Krumlauf MC, Babb RR, Chow CK, Fry TJ, Engels J, Buffet R, Morre M, Amato RJ, Venzon DJ, Korngold R, Pecora A, Gress RE, Mackall CL. Administration of rhIL-7 in humans increases in vivo TCR repertoire diversity by preferential expansion of naive T cell subsets. J Exp Med. 2008;205(7):1701–1714. doi: 10.1084/jem.20071681.
    1. Sakaguchi S, Wing K, Onishi Y, Prieto-Martin P, Yamaguchi T. Regulatory T cells: how do they suppress immune responses? Int Immunol. 2009;21(10):1105–1111. doi: 10.1093/intimm/dxp095.

Source: PubMed

3
Prenumerera