Positive end-expiratory pressure improves elastic working pressure in anesthetized children

Pablo Cruces, Sebastián González-Dambrauskas, Federico Cristiani, Javier Martínez, Ronnie Henderson, Benjamin Erranz, Franco Díaz, Pablo Cruces, Sebastián González-Dambrauskas, Federico Cristiani, Javier Martínez, Ronnie Henderson, Benjamin Erranz, Franco Díaz

Abstract

Background: Positive end-expiratory pressure (PEEP) has been demonstrated to decrease ventilator-induced lung injury in patients under mechanical ventilation (MV) for acute respiratory failure. Recently, some studies have proposed some beneficial effects of PEEP in ventilated patients without lung injury. The influence of PEEP on respiratory mechanics in children is not well known. Our aim was to determine the effects on respiratory mechanics of setting PEEP at 5 cmH2O in anesthetized healthy children.

Methods: Patients younger than 15 years old without history of lung injury scheduled for elective surgery gave informed consent and were enrolled in the study. After usual care for general anesthesia, patients were placed on volume controlled MV. Two sets of respiratory mechanics studies were performed using inspiratory and expiratory breath hold, with PEEP 0 and 5 cmH2O. The maximum inspiratory and expiratory flow (QI and QE) as well as peak inspiratory pressure (PIP), plateau pressure (PPL) and total PEEP (tPEEP) were measured. Respiratory system compliance (CRS), inspiratory and expiratory resistances (RawI and RawE) and time constants (KTI and KTE) were calculated. Data were expressed as median and interquartile range (IQR). Wilcoxon sign test and Spearman's analysis were used. Significance was set at P < 0.05.

Results: We included 30 patients, median age 39 (15-61.3) months old, 60% male. When PEEP increased, PIP increased from 12 (11,14) to 15.5 (14,18), and CRS increased from 0.9 (0.9,1.2) to 1.2 (0.9,1.4) mL·kg- 1·cmH2O- 1; additionally, when PEEP increased, driving pressure decreased from 6.8 (5.9,8.1) to 5.8 (4.7,7.1) cmH2O, and QE decreased from 13.8 (11.8,18.7) to 11.7 (9.1,13.5) L·min- 1 (all P < 0.01). There were no significant changes in resistance and QI.

Conclusions: Analysis of respiratory mechanics in anesthetized healthy children shows that PEEP at 5 cmH2O places the respiratory system in a better position in the P/V curve. A better understanding of lung mechanics may lead to changes in the traditional ventilatory approach, limiting injury associated with MV.

Keywords: Mechanical ventilation; Pediatrics; Positive end-expiratory pressure; Respiratory mechanics.

Conflict of interest statement

Ethics approval and consent to participate

Institutional Review Board at Centro Hospitalario Pereira Rossell approved the study (#2852015).

Written informed consent to participate was obtained from the parents/guardians after preanesthetic interview by the PI of the study.

Consent for publication

Written consent was obtained from caregivers of included patients.

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Figures

Fig. 1
Fig. 1
Individual value plot of driving pressure (cmH2O) with ZEEP and PEEP at 5 cmH2O in anesthetized healthy children
Fig. 2
Fig. 2
Pressure – Volume loop (P/V curve) sketch summarizing findings of the study: Anesthetized children with ZEEP (panel a) and after setting PEEP at 5 cmH2O (panel b). PIP, PPL and Paw increased after addition of PEEP of 5 cmH2O (PIP’, PPL’,Paw’), but dP decreased (dP'). Given the same VT, CRS, represented as the angle of the diagonal line between PEEP and PPL, increased (CRS’). All of them are sign of a more efficient working pressures of the respiratory system better position in P/V curve. On (panel b) respiratory mechanics with ZEEP was added in gray tone as reference

References

    1. Slutsky AS, Ranieri VM. Ventilator-induced lung injury. N Engl J Med. 2013;369:2126–2136. doi: 10.1056/NEJMra1208707.
    1. Donoso A, Cruces P. Daño pulmonar inducido por ventilación mecánica y estrategia ventilatoria convencional protectora. Rev Chil Pediatr. 2007;78:241–252. doi: 10.4067/S0370-41062007000300002.
    1. Bein T, Grasso S, Moerer O, Quintel M, Guerin C, Deja M, et al. The standard of care of patients with ARDS: ventilatory settings and rescue therapies for refractory hypoxemia. Intensive Care Med. 2016;42:699–711. doi: 10.1007/s00134-016-4325-4.
    1. Imai Y, Kawano T, Miyasaka K, Takata M, Imai T, Okuyama K. Inflammatory chemical mediators during conventional ventilation and during high frequency oscillatory ventilation. Am J Respir Crit Care Med. 1994;150:1550–1554. doi: 10.1164/ajrccm.150.6.7952613.
    1. Tusman G, Böhm SH, Warner DO, Sprung J. Atelectasis and perioperative pulmonary complications in high-risk patients. Curr Opin Anaesthesiol. 2012;25:1–10. doi: 10.1097/ACO.0b013e32834dd1eb.
    1. Vargas M, Sutherasan Y, Gregoretti C, Pelosi P. PEEP role in ICU and operating room: from pathophysiology to clinical practice. ScientificWorldJournal. 2014;2014:852356. doi: 10.1155/2014/852356.
    1. Futier E, Constantin JM, Paugam-Burtz C, Pascal J, Eurin M, Neuschwander A, et al. IMPROVE study group. A trial of intraoperative low-tidal-volume ventilation in abdominal surgery. N Engl J Med. 2013;369:428–437. doi: 10.1056/NEJMoa1301082.
    1. Wolthuis EK, Choi G, Dessing MC, Bresser P, Lutter R, Dzoljic M, et al. Mechanical ventilation with lower tidal volumes and positive end-expiratory pressure prevents pulmonary inflammation in patients without preexisting lung injury. Anesthesiology. 2008;108:46–54. doi: 10.1097/01.anes.0000296068.80921.10.
    1. Barbosa FT, Castro AA. de Sousa-Rodrigues CF. positive end-expiratory pressure (PEEP) during anaesthesia for prevention of mortality and postoperative pulmonary complications. Cochrane Database Syst Rev. 2014;6:CD007922.
    1. Severgnini P, Selmo G, Lanza C, Chiesa A, Frigerio A, Bacuzzi A, et al. Protective mechanical ventilation during general anesthesia for open abdominal surgery improves postoperative pulmonary function. Anesthesiology. 2013;118:1307–1321. doi: 10.1097/ALN.0b013e31829102de.
    1. Wahba RW. Perioperative functional residual capacity. Can J Anaesth. 1991;38:384–400. doi: 10.1007/BF03007630.
    1. Fletcher ME, Stack C, Ewart M, Davies CJ, Ridley S, Hatch DJ, et al. Respiratory compliance during sedation, anesthesia, and paralysis in infants and young children. J Appl Physiol. 1985;70:1977–1982. doi: 10.1152/jappl.1991.70.5.1977.
    1. Dobbinson TL, Nisbet HI, Pelton DA, Levison H. Functional residual capacity (FRC) and compliance in anaesthetized paralysed children. II. Clinical results. Can Anaesth Soc J. 1973;20:322–333. doi: 10.1007/BF03027170.
    1. Serafini G, Cornara G, Cavalloro F, Mori A, Dore R, Marraro G, et al. Pulmonary atelectasis during paediatric anaesthesia: CT scan evaluation and effect of positive end-expiratory pressure (PEEP) Paediatr Anaesth. 1999;9:225–228.
    1. Trachsel D, Svendsen J, Erb TO von Ungern-Sternberg BS. Effects of anaesthesia on paediatric lung function. Br J Anaesth. 2016;117:151–163. doi: 10.1093/bja/aew173.
    1. Feldman JM. Optimal ventilation of the anesthetized pediatric patient. Anesth Analg. 2015;120:165–175. doi: 10.1213/ANE.0000000000000472.
    1. Wanderer JP, Ehrenfeld JM, Epstein RH, Kor DJ, Bartz RR, Fernandez-Bustamante A, et al. Temporal trends and current practice patterns for intraoperative ventilation at U.S. academic medical centers: a retrospective study. BMC Anesthesiol. 2015;15:40. doi: 10.1186/s12871-015-0010-3.
    1. Kneyber MC. Intraoperative mechanical ventilation for the pediatric patient. Best Pract Res Clin Anaesthesiol. 2015;29:371–379. doi: 10.1016/j.bpa.2015.10.001.
    1. Erranz B, Díaz F, Donoso A, Salomón T, Carvajal C, Torres MF, et al. Decreased lung compliance increases preload dynamic tests in a pediatric acute lung injury model. Rev Chil Pediatr. 2015;86:404–409. doi: 10.1016/j.rchipe.2015.06.023.
    1. Díaz F, Erranz B, Donoso A, Carvajal C, Salomón T, Torres M, Cruces P. Surfactant deactivation in a pediatric model induces hypovolemia and fluid shift to the extravascular lung compartment. Paediatr Anaesth. 2013;23:250–257. doi: 10.1111/pan.12037.
    1. Feldman JM. Optimal ventilation of the anesthetized pediatric patient. Anesth Analg. 2015;120:165–175. doi: 10.1213/ANE.0000000000000472.
    1. Peterson-Carmichael S, Seddon PC, Cheifetz IM, Frerichs I, Hall GL, Hammer J, et al. ATS/ERS working group on infant and young ChildrenPulmonary function testing. An official American Thoracic Society/EuropeanRespiratory society workshop report: evaluation of respiratory mechanics andFunction in the pediatric and neonatal intensive care units. Ann Am Thorac Soc. 2016;13:S1–11. doi: 10.1513/AnnalsATS.201511-739ED.
    1. Kaditis AG, Motoyama EK, Zin W, Maekawa N, Nishio I, Imai T, et al. The effect of lung expansion and positive end-expiratory pressure on respiratory mechanics in anesthetized children. Anesth Analg. 2008;106:775–785. doi: 10.1213/ane.0b013e318162c20a.
    1. Cruces P, González-Dambrauskas S, Quilodrán J, Valenzuela J, Martínez J, Rivero N, et al. Respiratory mechanics in infants with severe bronchiolitis on controlled mechanical ventilation. BMC Pulm Med. 2017;17:129. doi: 10.1186/s12890-017-0475-6.
    1. Jonson B, Richard JC, Straus C, Mancebo J, Lemaire F, Brochard L. Pressure-volume curves and compliance in acute lung injury: evidence of recruitment above the lower inflection point. Am J Respir Crit Care Med. 1999;159:1172–1178. doi: 10.1164/ajrccm.159.4.9801088.
    1. Protti A, Maraffi T, Milesi M, Votta E, Santini A, Pugni P, et al. Role of strain rate in the pathogenesis of ventilator-induced lung edema. Crit Care Med. 2016;44:e838–e845. doi: 10.1097/CCM.0000000000001718.
    1. Amato MB, Meade MO, Slutsky AS, Brochard L, Costa EL, Schoenfeld DA, et al. Driving pressure and survival in the acute respiratory distress syndrome. N Engl J Med. 2015;372:747–755. doi: 10.1056/NEJMsa1410639.
    1. Lucangelo U, Bernabé F, Blanch L. Respiratory mechanics derived from signals in the ventilator circuit. Respir Care. 2005;50:55–65.
    1. Neto AS, Hemmes SN, Barbas CS, Beiderlinden M, Fernandez-Bustamante A, Futier E, et al. Association between driving pressure and development of postoperative pulmonary complications in patients undergoing mechanical ventilation for general anaesthesia: a meta-analysis of individual patient data. Lancet Respir Med. 2016;4:272–280. doi: 10.1016/S2213-2600(16)00057-6.
    1. Wirth S, Artner L, Broß T, Lozano-Zahonero S, Spaeth J, Schumann S, et al. Intratidal recruitment/derecruitment persists at low and moderate positive end-expiratory pressure in paediatric patients. Respir Physiol Neurobiol. 2016;234:9–13. doi: 10.1016/j.resp.2016.08.008.
    1. Rausch SMK, Haberthur D, Stampanoni M, Schittny JC, Wall WA. Local strain distribution in real three-dimensional alveolar geometries. Ann Biomed Eng. 2011;39:2835–2843. doi: 10.1007/s10439-011-0328-z.
    1. Webb HH, Tierney DF. Experimental pulmonary edema due to intermittent positive pressure ventilation with high inflation pressures. Protection by positive end-expiratory pressure. Am Rev Respir Dis. 2003;1974:556–565.

Source: PubMed

3
Prenumerera