Effects of dexmedetomidine in combination with fentanyl-based intravenous patient-controlled analgesia on pain attenuation after open gastrectomy in comparison with conventional thoracic epidural and fentanyl-based intravenous patient-controlled analgesia

Na Young Kim, Tae Dong Kwon, Sun Joon Bai, Sung Hoon Noh, Jung Hwa Hong, Haeyeon Lee, Ki-Young Lee, Na Young Kim, Tae Dong Kwon, Sun Joon Bai, Sung Hoon Noh, Jung Hwa Hong, Haeyeon Lee, Ki-Young Lee

Abstract

Background: This study was investigated the effects of dexmedetomidine in combination with fentanyl-based intravenous patient-controlled analgesia (IV-PCA) on pain attenuation in patients undergoing open gastrectomy in comparison with conventional thoracic epidural patient-controlled analgesia (E-PCA) and IV-PCA. Methods: One hundred seventy-one patients who planned open gastrectomy were randomly distributed into one of the 3 groups: conventional thoracic E-PCA (E-PCA group, n = 57), dexmedetomidine in combination with fentanyl-based IV-PCA (dIV-PCA group, n = 57), or fentanyl-based IV-PCA only (IV-PCA group, n = 57). The primary outcome was the postoperative pain intensity (numerical rating scale) at 3 hours after surgery, and the secondary outcomes were the number of bolus deliveries and bolus attempts, and the number of patients who required additional rescue analgesics. Mean blood pressure, heart rate, and adverse effects were evaluated as well. Results: One hundred fifty-three patients were finally completed the study. The postoperative pain intensity was significantly lower in the dIV-PCA and E-PCA groups than in the IV-PCA group, but comparable between the dIV-PCA group and the E-PCA group. Patients in the dIV-PCA and E-PCA groups needed significantly fewer additional analgesic rescues between 6 and 24 hours after surgery, and had a significantly lower number of bolus attempts and bolus deliveries during the first 24 hours after surgery than those in the IV-PCA group. Conclusions: Dexmedetomidine in combination with fentanyl-based IV-PCA significantly improved postoperative analgesia in patients undergoing open gastrectomy without hemodynamic instability, which was comparable to thoracic E-PCA. Furthermore, this approach could be clinically more meaningful owing to its noninvasive nature.

Keywords: dexmedetomidine; epidural; fentanyl; intravenous; patient-controlled analgesia; postoperative pain..

Conflict of interest statement

Competing Interests: The authors have declared that no competing interest exists.

Figures

Figure 1
Figure 1
Consort flow diagram. E-PCA, epidural patient-controlled analgesia; dIV-PCA, dexmedetomidine in combination with fentanyl-based intravenous patient-controlled analgesia; IV-PCA, intravenous patient-controlled analgesia; SBP, systolic blood pressure; PONV, postoperative nausea and vomiting.
Figure 2
Figure 2
Pain score at rest during the first 36 h after surgery. Data are expressed as mean ± standard deviation. †P < 0.001, ††P < 0.01 vs. the IV-PCA group (Bonferroni corrected); *P < 0.001, **P < 0.01 vs. the IV-PCA group (Bonferroni corrected). E-PCA, epidural patient-controlled analgesia; dIV-PCA, dexmedetomidine in combination with fentanyl-based intravenous patient-controlled analgesia; IV-PCA, intravenous patient-controlled analgesia; NRS, numerical rating scale.
Figure 3
Figure 3
Number of bolus deliveries (A) and the number of bolus attempts (B) during the first 36 h after surgery. Data are expressed as mean ± standard deviation. †P < 0.01, ††P < 0.05 vs. the IV-PCA group (Bonferroni corrected); *P < 0.01, **P < 0.05 vs. the IV-PCA group (Bonferroni corrected). E-PCA, epidural patient-controlled analgesia; dIV-PCA, dexmedetomidine in combination with fentanyl-based intravenous patient-controlled analgesia; IV-PCA, intravenous patient-controlled analgesia
Figure 4
Figure 4
Mean blood pressure (A) and heart rate (B) from prior induction until 36 h after surgery. Data are expressed as mean ± standard deviation. *P < 0.05, †P < 0.05 vs. the IV-PCA group (Bonferroni corrected); ‡P < 0.05 vs. the E-PCA group (Bonferroni corrected). E-PCA, epidural patient-controlled analgesia; dIV-PCA, dexmedetomidine in combination with fentanyl-based intravenous patient-controlled analgesia; IV-PCA, intravenous patient-controlled analgesia; Baseline, before induction of anesthesia; PACU, on arrival of post-anesthetic care unit.

References

    1. Wu Y, Liu F, Tang H, Wang Q, Chen L, Wu H, Zhang X, Miao J, Zhu M, Hu C. et al. The analgesic efficacy of subcostal transversus abdominis plane block compared with thoracic epidural analgesia and intravenous opioid analgesia after radical gastrectomy. Anesthesia and analgesia. 2013;117(2):507–513.
    1. Zheng X, Feng X, Cai XJ. Effectiveness and safety of continuous wound infiltration for postoperative pain management after open gastrectomy. World journal of gastroenterology. 2016;22(5):1902–1910.
    1. Singh AP, Singh D, Singh Y, Jain G. Postoperative analgesic efficacy of epidural tramadol as adjutant to ropivacaine in adult upper abdominal surgeries. Anesthesia, essays and researches. 2015;9(3):369–373.
    1. Zhu Z, Wang C, Xu C, Cai Q. Influence of patient-controlled epidural analgesia versus patient-controlled intravenous analgesia on postoperative pain control and recovery after gastrectomy for gastric cancer: a prospective randomized trial. Gastric cancer: official journal of the International Gastric Cancer Association and the Japanese Gastric Cancer Association. 2013;16(2):193–200.
    1. Manion SC, Brennan TJ. Thoracic epidural analgesia and acute pain management. Anesthesiology. 2011;115(1):181–188.
    1. Manikian B, Cantineau JP, Bertrand M, Kieffer E, Sartene R, Viars P. Improvement of diaphragmatic function by a thoracic extradural block after upper abdominal surgery. Anesthesiology. 1988;68(3):379–386.
    1. Freise H, Van Aken HK. Risks and benefits of thoracic epidural anaesthesia. Br J Anaesth. 2011;107(6):859–868.
    1. Moen V, Dahlgren N, Irestedt L. Severe neurological complications after central neuraxial blockades in Sweden 1990-1999. Anesthesiology. 2004;101(4):950–959.
    1. Burlacu CL. PCEA vs. PCA for post-thoracotomy pain: is this any longer the question? Journal of postgraduate medicine. 2008;54(2):80–81.
    1. Lee JH, Park JH, Kil HK, Choi SH, Noh SH, Koo BN. Efficacy of intrathecal morphine combined with intravenous analgesia versus thoracic epidural analgesia after gastrectomy. Yonsei medical journal. 2014;55(4):1106–1114.
    1. Rawal N. Epidural technique for postoperative pain: gold standard no more? Regional anesthesia and pain medicine. 2012;37(3):310–317.
    1. Hankin CS, Schein J, Clark JA, Panchal S. Adverse events involving intravenous patient-controlled analgesia. American journal of health-system pharmacy: AJHP: official journal of the American Society of Health-System Pharmacists. 2007;64(14):1492–1499.
    1. Choi JB, Shim YH, Lee YW, Lee JS, Choi JR, Chang CH. Incidence and risk factors of postoperative nausea and vomiting in patients with fentanyl-based intravenous patient-controlled analgesia and single antiemetic prophylaxis. Yonsei medical journal. 2014;55(5):1430–1435.
    1. Gerlach AT, Dasta JF. Dexmedetomidine: an updated review. Ann Pharmacother. 2007;41(2):245–252.
    1. Ebert TJ, Hall JE, Barney JA, Uhrich TD, Colinco MD. The effects of increasing plasma concentrations of dexmedetomidine in humans. Anesthesiology. 2000;93(2):382–394.
    1. Paris A, Tonner PH. Dexmedetomidine in anaesthesia. Curr Opin Anaesthesiol. 2005;18(4):412–418.
    1. Tufanogullari B, White PF, Peixoto MP, Kianpour D, Lacour T, Griffin J, Skrivanek G, Macaluso A, Shah M, Provost DA. Dexmedetomidine infusion during laparoscopic bariatric surgery: the effect on recovery outcome variables. Anesthesia and analgesia. 2008;106(6):1741–1748.
    1. Aho M, Erkola O, Kallio A, Scheinin H, Korttila K. Dexmedetomidine infusion for maintenance of anesthesia in patients undergoing abdominal hysterectomy. Anesthesia and analgesia. 1992;75(6):940–946.
    1. Gurbet A, Basagan-Mogol E, Turker G, Ugun F, Kaya FN, Ozcan B. Intraoperative infusion of dexmedetomidine reduces perioperative analgesic requirements. Can J Anaesth. 2006;53(7):646–652.
    1. Ge DJ, Qi B, Tang G, Li JY. Intraoperative Dexmedetomidine Promotes Postoperative Analgesia in Patients After Abdominal Colectomy: A Consort-Prospective, Randomized, Controlled Clinical Trial. Medicine. 2015;94(37):e1514.
    1. Lin TF, Yeh YC, Lin FS, Wang YP, Lin CJ, Sun WZ, Fan SZ. Effect of combining dexmedetomidine and morphine for intravenous patient-controlled analgesia. Br J Anaesth. 2009;102(1):117–122.
    1. Ren C, Chi M, Zhang Y, Zhang Z, Qi F, Liu Z. Dexmedetomidine in Postoperative Analgesia in Patients Undergoing Hysterectomy: A CONSORT-Prospective, Randomized, Controlled Trial. Medicine. 2015;94(32):e1348.
    1. Ren C, Zhang X, Liu Z, Li C, Zhang Z, Qi F. Effect of Intraoperative and Postoperative Infusion of Dexmedetomidine on the Quality of Postoperative Analgesia in Highly Nicotine-Dependent Patients After Thoracic Surgery: A CONSORT-Prospective, Randomized, Controlled Trial. Medicine. 2015;94(32):e1329.
    1. Nie Y, Liu Y, Luo Q, Huang S. Effect of dexmedetomidine combined with sufentanil for post-caesarean section intravenous analgesia: a randomised, placebo-controlled study. European journal of anaesthesiology. 2014;31(4):197–203.
    1. Williamson A, Hoggart B. Pain: a review of three commonly used pain rating scales. Journal of clinical nursing. 2005;14(7):798–804.
    1. Perkins FM, Kehlet H. Chronic pain as an outcome of surgery. A review of predictive factors. Anesthesiology. 2000;93(4):1123–1133.
    1. Wightman JA. A prospective survey of the incidence of postoperative pulmonary complications. The British journal of surgery. 1968;55(2):85–91.
    1. Latimer RG, Dickman M, Day WC, Gunn ML, Schmidt CD. Ventilatory patterns and pulmonary complications after upper abdominal surgery determined by preoperative and postoperative computerized spirometry and blood gas analysis. American journal of surgery. 1971;122(5):622–632.
    1. Ferguson SE, Malhotra T, Seshan VE, Levine DA, Sonoda Y, Chi DS, Barakat RR, Abu-Rustum NR. A prospective randomized trial comparing patient-controlled epidural analgesia to patient-controlled intravenous analgesia on postoperative pain control and recovery after major open gynecologic cancer surgery. Gynecologic oncology. 2009;114(1):111–116.
    1. Block BM, Liu SS, Rowlingson AJ, Cowan AR, Cowan JA Jr, Wu CL. Efficacy of postoperative epidural analgesia: a meta-analysis. Jama. 2003;290(18):2455–2463.
    1. Gritsenko K, Khelemsky Y, Kaye AD, Vadivelu N, Urman RD. Multimodal therapy in perioperative analgesia. Best practice & research Clinical anaesthesiology. 2014;28(1):59–79.
    1. Joshi GP. Multimodal analgesia techniques and postoperative rehabilitation. Anesthesiology clinics of North America. 2005;23(1):185–202.
    1. Chen JY, Wu GJ, Mok MS, Chou YH, Sun WZ, Chen PL, Chan WS, Yien HW, Wen YR. Effect of adding ketorolac to intravenous morphine patient-controlled analgesia on bowel function in colorectal surgery patients-a prospective, randomized, double-blind study. Acta anaesthesiologica Scandinavica. 2005;49(4):546–551.
    1. Yeh YC, Lin TF, Lin FS, Wang YP, Lin CJ, Sun WZ. Combination of opioid agonist and agonist-antagonist: patient-controlled analgesia requirement and adverse events among different-ratio morphine and nalbuphine admixtures for postoperative pain. Br J Anaesth. 2008;101(4):542–548.
    1. Michelet P, Guervilly C, Helaine A, Avaro JP, Blayac D, Gaillat F, Dantin T, Thomas P, Kerbaul F. Adding ketamine to morphine for patient-controlled analgesia after thoracic surgery: influence on morphine consumption, respiratory function, and nocturnal desaturation. Br J Anaesth. 2007;99(3):396–403.
    1. Clemente A, Carli F. The physiological effects of thoracic epidural anesthesia and analgesia on the cardiovascular, respiratory and gastrointestinal systems. Minerva anestesiologica. 2008;74(10):549–563.
    1. Popping DM, Elia N, Van Aken HK, Marret E, Schug SA, Kranke P, Wenk M, Tramer MR. Impact of epidural analgesia on mortality and morbidity after surgery: systematic review and meta-analysis of randomized controlled trials. Annals of surgery. 2014;259(6):1056–1067.
    1. Song Y, Shim JK, Song JW, Kim EK, Kwak YL. Dexmedetomidine added to an opioid-based analgesic regimen for the prevention of postoperative nausea and vomiting in highly susceptible patients: A randomised controlled trial. European journal of anaesthesiology. 2016;33(2):75–83.

Source: PubMed

3
Prenumerera