Early Check: translational science at the intersection of public health and newborn screening

Donald B Bailey Jr, Lisa M Gehtland, Megan A Lewis, Holly Peay, Melissa Raspa, Scott M Shone, Jennifer L Taylor, Anne C Wheeler, Michael Cotten, Nancy M P King, Cynthia M Powell, Barbara Biesecker, Christine E Bishop, Beth Lincoln Boyea, Martin Duparc, Blake A Harper, Alex R Kemper, Stacey N Lee, Rebecca Moultrie, Katherine C Okoniewski, Ryan S Paquin, Denise Pettit, Katherine Ackerman Porter, Scott J Zimmerman, Donald B Bailey Jr, Lisa M Gehtland, Megan A Lewis, Holly Peay, Melissa Raspa, Scott M Shone, Jennifer L Taylor, Anne C Wheeler, Michael Cotten, Nancy M P King, Cynthia M Powell, Barbara Biesecker, Christine E Bishop, Beth Lincoln Boyea, Martin Duparc, Blake A Harper, Alex R Kemper, Stacey N Lee, Rebecca Moultrie, Katherine C Okoniewski, Ryan S Paquin, Denise Pettit, Katherine Ackerman Porter, Scott J Zimmerman

Abstract

Background: Newborn screening (NBS) occupies a unique space at the intersection of translational science and public health. As the only truly population-based public health program in the United States, NBS offers the promise of making the successes of translational medicine available to every infant with a rare disorder that is difficult to diagnose clinically, but for which strong evidence indicates that presymptomatic treatment will substantially improve outcomes. Realistic NBS policy requires data, but rare disorders face a special challenge: Screening cannot be done without supportive data, but adequate data cannot be collected in the absence of large-scale screening. The magnitude and scale of research to provide this expanse of data require working with public health programs, but most do not have the resources or mandate to conduct research.

Methods: To address this gap, we have established Early Check, a research program in partnership with a state NBS program. Early Check provides the infrastructure needed to identify conditions for which there have been significant advances in treatment potential, but require a large-scale, population-based study to test benefits and risks, demonstrate feasibility, and inform NBS policy.

Discussion: Our goal is to prove the benefits of a program that can, when compared with current models, accelerate understanding of diseases and treatments, reduce the time needed to consider inclusion of appropriate conditions in the standard NBS panel, and accelerate future research on new NBS conditions, including clinical trials for investigational interventions.

Trial registration: Clinicaltrials.gov registration # NCT03655223 . Registered on August 31, 2018.

Keywords: Newborn screening; Rare disorders; Translational science.

Conflict of interest statement

The individual authors of this paper declare no competing interests. Early Check is supported in part by contributed reagents and equipment from Asuragen, but none of the authors has a personal or financial relationship with Asuragen.

Figures

Fig. 1
Fig. 1
Early Check Protocol

References

    1. Kemper AR, Green NS, Calonge N, Lam WK, Comeau AM, Goldenberg AJ, et al. Decision-making process for conditions nominated to the recommended uniform screening panel: statement of the US Department of Health and Human Services Secretary’s advisory committee on heritable disorders in newborns and children. Genet Med. 2014;16(2):183–187. doi: 10.1038/gim.2013.98.
    1. Lak R, Yazdizadeh B, Davari M, Nouhi M, Kelishadi R. Newborn screening for galactosaemia. Cochrane Database Syst Rev. 2017;(12):CD012272.
    1. Bailey DB, Jr, Gehtland L. Newborn screening: evolving challenges in an era of rapid discovery. JAMA. 2015;313(15):1511–1512. doi: 10.1001/jama.2014.17488.
    1. Howson CP, Cedergren B, Giugliani R, Huhtinen P, Padilla CD, Palubiak CS, et al. Universal newborn screening: a roadmap for action. Mol Genet Metab. 2018;124(3):177–183. doi: 10.1016/j.ymgme.2018.04.009.
    1. Jansen ME, Metternick-Jones SC, Lister KJ. International differences in the evaluation of conditions for newborn bloodspot screening: a review of scientific literature and policy documents. Eur J Hum Genet. 2016;25(1):10–16. doi: 10.1038/ejhg.2016.126.
    1. Bailey DB, Gariepy J. Critical periods. In: Haith MM, Benson JB, editors. Encyclopedia of infant and early childhood development. San Diego: Elsevier; 2008.
    1. Grosse SD, Boyle CA, Kenneson A, Khoury MJ, Wilfond BS. From public health emergency to public health service: the implications of evolving criteria for newborn screening panels. Pediatrics. 2006;117(3):923–929. doi: 10.1542/peds.2005-0553.
    1. Fost N. Informed consent should be a required element for newborn screening, even for disorders with high benefit-risk ratios. J Law Med Ethics. 2016;44(2):241–255. doi: 10.1177/1073110516654118.
    1. Kelly N, Makarem DC, Wasserstein MP. Screening of newborns for disorders with high benefit-risk ratios should be mandatory. J Law Med Ethics. 2016;44(2):231–240. doi: 10.1177/1073110516654133.
    1. Botkin JR, Rothwell E, Anderson R, Stark L, Goldenberg A, Lewis M, et al. Public attitudes regarding the use of residual newborn screening specimens for research. Pediatrics. 2012;129(2):231–238. doi: 10.1542/peds.2011-0970.
    1. Grosse SD, Rogowski WH, Ross LF, Cornel MC, Dondorp WJ, Khoury MJ. Population screening for genetic disorders in the 21st century: evidence, economics, and ethics. Public Health Genomics. 2010;13(2):106–115. doi: 10.1159/000226594.
    1. Tingley K, Coyle D, Graham ID, Sikora L, Chakraborty P, Wilson K, et al. Using a meta-narrative literature review and focus groups with key stakeholders to identify perceived challenges and solutions for generating robust evidence on the effectiveness of treatments for rare diseases. Orphanet J Rare Dis. 2018;13(1):104. doi: 10.1186/s13023-018-0851-1.
    1. Auvin S, Irwin J, Abi-Aad P, Battersby A. The problem of rarity: estimation of prevalence in rare disease. Value Health. 2018;21(5):501–507. doi: 10.1016/j.jval.2018.03.002.
    1. Lally C, Jones C, Farwell W, Reyna SP, Cook SF, Flanders WD. Indirect estimation of the prevalence of spinal muscular atrophy type I, II, and III in the United States. Orphanet J Rare Dis. 2017;12(1):175. doi: 10.1186/s13023-017-0724-z.
    1. Mendell JR, Al-Zaidy S, Shell R, Arnold WD, Rodino-Klapac LR, Prior TW, et al. Single-dose gene-replacement therapy for spinal muscular atrophy. N Engl J Med. 2017;377(18):1713–1722. doi: 10.1056/NEJMoa1706198.
    1. Berry SA, Brown C, Grant M, Greene CL, Jurecki E, Koch J, et al. Newborn screening 50 years later: access issues faced by adults with PKU. Genet Med. 2013;15(8):591–599. doi: 10.1038/gim.2013.10.
    1. Hinton CF, Homer CJ, Thompson AA, Williams A, Hassell KL, Feuchtbaum L, et al. A framework for assessing outcomes from newborn screening: on the road to measuring its promise. Mol Genet Metab. 2016;118(4):221–229. doi: 10.1016/j.ymgme.2016.05.017.
    1. Bailey DB, Jr, Berry-Kravis E, Gane LW, Guarda S, Hagerman R, Powell CM, et al. Fragile X newborn screening: lessons learned from a multisite screening study. Pediatrics. 2017;139(Suppl 3):S216–SS25. doi: 10.1542/peds.2016-1159H.
    1. Phan HC, Taylor JL, Hannon H, Howell R. Newborn screening for spinal muscular atrophy: anticipating an imminent need. Semin Perinatol. 2015;39(3):217–229. doi: 10.1053/j.semperi.2015.03.006.
    1. Taylor JL, Lee FK, Yazdanpanah GK, Staropoli JF, Liu M, Carulli JP, et al. Newborn blood spot screening test using multiplexed real-time PCR to simultaneously screen for spinal muscular atrophy and severe combined immunodeficiency. Clin Chem. 2015;61(2):412–419. doi: 10.1373/clinchem.2014.231019.
    1. Moorcraft SY, Marriott C, Peckitt C, Cunningham D, Chau I, Starling N, et al. Patients’ willingness to participate in clinical trials and their views on aspects of cancer research: results of a prospective patient survey. Trials. 2016;17:17. doi: 10.1186/s13063-015-1105-3.
    1. Boland J, Currow DC, Wilcock A, Tieman J, Hussain JA, Pitsillides C, et al. A systematic review of strategies used to increase recruitment of people with cancer or organ failure into clinical trials: implications for palliative care research. J Pain Symptom Manag. 2015;49(4):762–72 e5. doi: 10.1016/j.jpainsymman.2014.09.018.
    1. Treweek Shaun, Lockhart Pauline, Pitkethly Marie, Cook Jonathan A, Kjeldstrøm Monica, Johansen Marit, Taskila Taina K, Sullivan Frank M, Wilson Sue, Jackson Catherine, Jones Ritu, Mitchell Elizabeth D. Methods to improve recruitment to randomised controlled trials: Cochrane systematic review and meta-analysis. BMJ Open. 2013;3(2):e002360. doi: 10.1136/bmjopen-2012-002360.
    1. Eshera N, Itana H, Zhang L, Soon G, Fadiran EO. Demographics of clinical trials participants in pivotal clinical trials for new molecular entity drugs and biologics approved by FDA from 2010 to 2012. Am J Ther. 2015;22(6):435–455. doi: 10.1097/MJT.0000000000000177.
    1. Heywood J, Evangelou M, Goymer D, Kennet J, Anselmiova K, Guy C, et al. Effective recruitment of participants to a phase I study using the internet and publicity releases through charities and patient organisations: analysis of the adaptive study of IL-2 dose on regulatory T cells in type 1 diabetes (DILT1D) Trials. 2015;16:86. doi: 10.1186/s13063-015-0583-7.
    1. Sutton EF, Cain LE, Vallo PM, Redman LM. Strategies for successful recruitment of pregnant patients into clinical trials. Obstet Gynecol. 2017;129(3):554–559. doi: 10.1097/AOG.0000000000001900.
    1. Paquin RS, Peay HL, Gehtland LM, Lewis MA, Bailey DB., Jr Parental intentions to enroll children in a voluntary expanded newborn screening program. Soc Sci Med. 2016;166:17–24. doi: 10.1016/j.socscimed.2016.07.036.
    1. Park CH, Winglee M, Kwan J, Andrews L, Hudak ML. Comparison of recruitment strategy outcomes in the National Children's study. Pediatrics. 2017;140(2):1–11. doi: 10.1542/peds.2016-2822.
    1. Juraschek SP, Plante TB, Charleston J, Miller ER, Yeh HC, Appel LJ, et al. Use of online recruitment strategies in a randomized trial of cancer survivors. Clin Trials. 2018;15(2):130–138. doi: 10.1177/1740774517745829.
    1. Verbrugge J, Rumbaugh M, Cook L, Schulze J, Miller M, Heathers L, et al. The promise and pitfalls of Facebook advertising: a genetic counselor's perspective. J Genet Couns. 2018;27(2):326–328. doi: 10.1007/s10897-017-0207-3.
    1. Whitaker C, Stevelink S, Fear N. The use of Facebook in recruiting participants for health research purposes: a systematic review. J Med Internet Res. 2017;19(8):e290. doi: 10.2196/jmir.7071.
    1. Sokol R, Fisher E. Peer support for the hardly reached: a systematic review. Am J Public Health. 2016;106(7):e1–e8. doi: 10.2105/AJPH.2016.303180.
    1. Lillie SE, Tarini BA, Janz NK, Zikmund-Fisher BJ. Framing optional genetic testing in the context of mandatory newborn screening tests. BMC Med Inform Decis Mak. 2015;15:50. doi: 10.1186/s12911-015-0173-3.
    1. Phillippi JC, Doersam JK, Neal JL, Roumie CL. Electronic informed consent to facilitate recruitment of pregnant women into research. J Obstet Gynecol Neonatal Nurs. 2018;47(4):529–534. doi: 10.1016/j.jogn.2018.04.134.
    1. Tait AR, Voepel-Lewis T. Digital multimedia: a new approach for informed consent? JAMA. 2015;313(5):463–464. doi: 10.1001/jama.2014.17122.
    1. Millington D, Norton S, Singh R, Sista R, Srinivasan V, Pamula V. Digital microfluidics comes of age: high-throughput screening to bedside diagnostic testing for genetic disorders in newborns. Expert Rev Mol Diagn. 2018;18(8):701–712. doi: 10.1080/14737159.2018.1495076.
    1. Berg JS, Agrawal PB, Bailey DB, Jr, Beggs AH, Brenner SE, Brower AM, et al. Newborn sequencing in genomic medicine and public health. Pediatrics. 2017;139(2):e20162252. doi: 10.1542/peds.2016-2252.
    1. Friedman JM, Cornel MC, Goldenberg AJ, Lister KJ, Senecal K, Vears DF, et al. Genomic newborn screening: public health policy considerations and recommendations. BMC Med Genet. 2017;10(1):9.
    1. Lewis MA, Paquin RS, Roche MI, Furberg RD, Rini C, Berg JS, et al. Supporting parental decisions about genomic sequencing for newborn screening: the NC NEXUS decision aid. Pediatrics. 2016;137(Suppl 1):S16–S23. doi: 10.1542/peds.2015-3731E.
    1. Abachin E, Convers S, Falque S, Esson R, Mallet L, Nougarede N. Comparison of reverse-transcriptase qPCR and droplet digital PCR for the quantification of dengue virus nucleic acid. Biologicals. 2018;52:49–54. doi: 10.1016/j.biologicals.2018.01.001.
    1. Bell AD, Usher CL, McCarroll SA. Analyzing copy number variation with droplet digital PCR. Methods Mol Biol. 2018;1768:143–160. doi: 10.1007/978-1-4939-7778-9_9.
    1. Bailey DB, Jr, Armstrong FD, Kemper AR, Skinner D, Warren SF. Supporting family adaptation to presymptomatic and "untreatable" conditions in an era of expanded newborn screening. J Pediatr Psychol. 2009;34(6):648–661. doi: 10.1093/jpepsy/jsn032.
    1. Kemper AR, Bailey DB., Jr Pediatricians’ knowledge of and attitudes toward fragile X syndrome screening. Acad Pediatr. 2009;9(2):114–117. doi: 10.1016/j.acap.2008.11.011.
    1. Baur C, Prue C. The CDC clear communication index is a new evidence-based tool to prepare and review health information. Health Promot Pract. 2014;15(5):629–637. doi: 10.1177/1524839914538969.
    1. Athens BA, Caldwell SL, Umstead KL, Connors PD, Brenna E, Biesecker BB. A systematic review of randomized controlled trials to assess outcomes of genetic counseling. J Genet Couns. 2017;26(5):902–933. doi: 10.1007/s10897-017-0082-y.
    1. Hilgart JS, Hayward JA, Coles B, Iredale R. Telegenetics: a systematic review of telemedicine in genetics services. Genet Med. 2012;14(9):765–776. doi: 10.1038/gim.2012.40.
    1. Green J, Pickles A, Pasco G, Bedford R, Wan MW, Elsabbagh M, et al. Randomised trial of a parent-mediated intervention for infants at high risk for autism: longitudinal outcomes to age 3 years. J Child Psychol Psychiatry. 2017;58(12):1330–1340. doi: 10.1111/jcpp.12728.
    1. Contopoulos-Ioannidis DG, Alexiou GA, Gouvias TC, Medicine IJP. Life cycle of translational research for medical interventions. Science. 2008;321(5894):1298–1299. doi: 10.1126/science.1160622.
    1. Lenfant C. Shattuck lecture--Clinical research to clinical practice--lost in translation? N Engl J Med. 2003;349(9):868–874. doi: 10.1056/NEJMsa035507.
    1. Westfall JM, Mold J, Fagnan L. Practice-based research—“blue highways” on the NIH roadmap. JAMA. 2007;297(4):403–406. doi: 10.1001/jama.297.4.403.
    1. Dougherty D, Conway PH. The “3T's” road map to transform US health care: the “how” of high-quality care. JAMA. 2008;299(19):2319–2321. doi: 10.1001/jama.299.19.2319.
    1. Khoury MJ, Gwinn M, Yoon PW, Dowling N, Moore CA, Bradley L. The continuum of translation research in genomic medicine: how can we accelerate the appropriate integration of human genome discoveries into health care and disease prevention? Genet Med. 2007;9(10):665–674. doi: 10.1097/GIM.0b013e31815699d0.
    1. Sung NS, Crowley WF, Jr, Genel M, Salber P, Sandy L, Sherwood LM, et al. Central challenges facing the national clinical research enterprise. JAMA. 2003;289(10):1278–1287. doi: 10.1001/jama.289.10.1278.
    1. Trochim W, Kane C, Graham MJ, Pincus HA. Evaluating translational research: a process marker model. Clin Transl Sci. 2011;4(3):153–162. doi: 10.1111/j.1752-8062.2011.00291.x.
    1. Taylor-Phillips S, Stinton C, Ferrante di Ruffano L, Seedat F, Clarke A, Deeks JJ. Association between use of systematic reviews and national policy recommendations on screening newborn babies for rare diseases: systematic review and meta-analysis. BMJ. 2018;361:k1612.
    1. Wasserstein MP, Andriola M, Arnold G, Aron A, Duffner P, Erbe RW, et al. Clinical outcomes of children with abnormal newborn screening results for Krabbe disease in New York state. Genet Med. 2016;18(12):1235–1243. doi: 10.1038/gim.2016.35.

Source: PubMed

3
Prenumerera