Aerobic Exercise Training Improves Cerebral Blood Flow and Executive Function: A Randomized, Controlled Cross-Over Trial in Sedentary Older Men

Jordi P D Kleinloog, Ronald P Mensink, Dimo Ivanov, Jos J Adam, Kamil Uludağ, Peter J Joris, Jordi P D Kleinloog, Ronald P Mensink, Dimo Ivanov, Jos J Adam, Kamil Uludağ, Peter J Joris

Abstract

Background: Physical activity may attenuate age-related cognitive decline by improving cerebrovascular function. The aim of this study was therefore to investigate effects of aerobic exercise training on cerebral blood flow (CBF), which is a sensitive physiological marker of cerebrovascular function, in sedentary older men.

Methods: Seventeen apparently healthy men, aged 60-70 years and with a BMI between 25 and 35 kg/m2, were included in a randomized, controlled cross-over trial. Study participants were randomly allocated to a fully-supervised, progressive, aerobic exercise training or no-exercise control period for 8 weeks, separated by a 12-week wash-out period. Measurements at the end of each period included aerobic fitness evaluated using peak oxygen consumption during incremental exercise (VO2 peak), CBF measured with pseudo-continuous arterial spin labeling magnetic resonance imaging, and post-load glucose responses determined using an oral glucose tolerance test (OGTT). Furthermore, cognitive performance was assessed in the domains of executive function, memory, and psychomotor speed.

Results: VO2 peak significantly increased following aerobic exercise training compared to no-exercise control by 262 ± 236 mL (P < 0.001). CBF was increased by 27% bilaterally in the frontal lobe, particularly the subcallosal and anterior cingulate gyrus (cluster volume: 1008 mm3; P < 0.05), while CBF was reduced by 19% in the right medial temporal lobe, mainly temporal fusiform gyrus (cluster volume: 408 mm3; P < 0.05). Mean post-load glucose concentrations determined using an OGTT decreased by 0.33 ± 0.63 mmol/L (P = 0.049). Furthermore, executive function improved as the latency of response was reduced by 5% (P = 0.034), but no changes were observed in memory or psychomotor speed.

Conclusion: Aerobic exercise training improves regional CBF in sedentary older men. These changes in CBF may underlie exercise-induced beneficial effects on executive function, which could be partly mediated by improvements in glucose metabolism. This clinical trial is registered on ClinicalTrials.gov as NCT03272061.

Keywords: aging; arterial spin labeling; cerebral blood flow; cognition; exercise; glucose metabolism.

Copyright © 2019 Kleinloog, Mensink, Ivanov, Adam, Uludağ and Joris.

Figures

FIGURE 1
FIGURE 1
Perfusion-weighted image acquired using pseudo-continuous arterial spin labeling that we generated at the Scannexus research facilities in Maastricht. The images show the cerebral blood flow (CBF) in mL/100 g tissue/min (scale shown by color bar). (A) Sagittal slice including angiogram from vertebral and carotid artery, coronal slice, and axial slice. The yellow rectangular boxes represent the imaging box and labeling plane perpendicular to the arteries. (B) Mean CBF map from all participants (n = 14) after the control period. Data from a randomized, controlled crossover study with sedentary older men.
FIGURE 2
FIGURE 2
CONSORT flow diagram. Diagram of the progress through the phases of this randomized, controlled crossover study with sedentary overweight or slightly obese older men.
FIGURE 3
FIGURE 3
Data from a randomized, controlled crossover study with sedentary overweight or slightly obese older men (n = 17). Data were analyzed using linear mixed models on the difference between each timepoint with baseline. (A) Mean (±SEM) difference in peak oxygen consumption (VO2peak) and (B) maximal power (Pmax) difference during the maximal exercise. Maximal exercise tests were performed every 2 weeks during the intervention period. During the control period, maximal exercise tests were performed at baseline, after 4 weeks and after 8 weeks. Baseline values were not significantly different. There was a significant treatment ∗ time interaction for VO2peak (P = 0.018) and Pmax (P < 0.001). After Bonferroni correction there was a significant difference between control and intervention period at 4 weeks (#P = 0.006) and at 8 weeks for VO2peak and Pmax (∗P < 0.001). (C) Mean (±SEM) difference in glucose concentrations during a 7-point oral glucose tolerance test (OGTT) test. There was a significant treatment effect for glucose concentration (P = 0.049).
FIGURE 4
FIGURE 4
Results of voxel-wise comparisons including all acquired cerebral blood flow (CBF) data in three dimensional MNI template from a randomized, controlled crossover study with sedentary overweight, or slightly obese older men (n = 14). CBF increased bilaterally after the intervention compared to the control period P < 0.05 (Family-wise error corrected). The CBF of cluster 1 and 2 increased after the intervention period compared to the control with 6.39 mL/100 g tissue/min (volume: 392 mm3) and 6.95 mL/100 g tissue/min (volume: 616 mm3), respectively. The CBF of cluster 3 decreased with 4.4 mL/100 g tissue/min (volume: 408 mm3).

References

    1. Alexopoulos P., Sorg C., Förschler A., Grimmer T., Skokou M., Wohlschläger A., et al. (2012). Perfusion abnormalities in mild cognitive impairment and mild dementia in Alzheimer’s disease measured by pulsed arterial spin labeling MRI. Eur. Arch. Psychiatry Clin. Neurosci. 262 69–77. 10.1007/s00406-011-0226-2
    1. Alsop D. C., Detre J. A., Golay X., Gunther M., Hendrikse J., Hernandez-Garcia L., et al. (2015). Recommended implementation of arterial spin-labeled perfusion MRI for clinical applications: a consensus of the ISMRM perfusion study group and the European consortium for ASL in dementia. Magn. Reson. Med. 73 102–116. 10.1002/mrm.25197
    1. Alsop D. C., Detre J. A., Grossman M. (2000). Assessment of cerebral blood flow in Alzheimer’s disease by spin-labeled magnetic resonance imaging. Ann. Neurol. 47 93–100. 10.1002/1531-8249(200001)47:1<93::aid-ana15>;2-8
    1. Angevaren M., Aufdemkampe G., Verhaar H. J., Aleman A., Vanhees L. (2008). Physical activity and enhanced fitness to improve cognitive function in older people without known cognitive impairment. Cochrane Database Syst. Rev. 16:5381.
    1. Arnold S. E., Arvanitakis Z., Macauley-Rambach S. L., Koenig A. M., Wang H.-Y., Ahima R. S., et al. (2018). Brain insulin resistance in type 2 diabetes and Alzheimer disease: concepts and conundrums. Nat. Rev. Neurol. 14 168–181. 10.1038/nrneurol.2017.185
    1. Astrakas L. G., Argyropoulou M. I. (2010). Shifting from region of interest (ROI) to voxel-based analysis in human brain mapping. Pediatr. Radiol. 40 1857–1867. 10.1007/s00247-010-1677-8
    1. Bangen K. J., Werhane M. L., Weigand A. J., Edmonds E. C., Delano-Wood L., Thomas K. R., et al. (2018). Reduced regional cerebral blood flow relates to poorer cognition in older adults with type 2 diabetes. Front. Aging Neurosci. 10:270. 10.3389/fnagi.2018.00270
    1. Birdsill A. C., Carlsson C. M., Willette A. A., Okonkwo O. C., Johnson S. C., Xu G., et al. (2013). Low cerebral blood flow is associated with lower memory function in metabolic syndrome. Obesity 21 1313–1320. 10.1002/oby.20170
    1. Boniol M., Dragomir M., Autier P., Boyle P. (2017). Physical activity and change in fasting glucose and HbA1c: a quantitative meta-analysis of randomized trials. Diabetologica 54 983–991. 10.1007/s00592-017-1037-3
    1. Brouns F., Bjorck I., Frayn K. N., Gibbs A. L., Lang V., Slama G., et al. (2005). Glycaemic index methodology. Nutr. Res. Rev. 18 145–171. 10.1079/NRR2005100
    1. Brown G. G., Clark C., Liu T. T. (2007). Measurement of cerebral perfusion with arterial spin labeling: part 2. Applications. J. Int. Neuropsychol. Soc. 13 526–538.
    1. Burdette J. H., Laurienti P. J., Espeland M. A., Morgan A., Telesford Q., Vechlekar C. D., et al. (2010). Using network science to evaluate exercise-associated brain changes in older adults. Front. Aging Neurosci. 2:23. 10.3389/fnagi.2010.00023
    1. Chapman S. B., Aslan S., Spence J. S., Defina L. F., Keebler M. W., Didehbani N., et al. (2013). Shorter term aerobic exercise improves brain, cognition, and cardiovascular fitness in aging. Front. Aging Neurosci. 5:75. 10.3389/fnagi.2013.00075
    1. Chappell M. A., Groves A. R., Whitcher B., Woolrich M. W. (2009). Variational Bayesian inference for a nonlinear forward model. IEEE Trans. Signal. Process. 57 223–236. 10.1109/tsp.2008.2005752
    1. Colcombe S., Kramer A. F. (2003). Fitness effects on the cognitive function of older adults: a meta-analytic study. Psychol. Sci. 14 125–130. 10.1111/1467-9280.t01-1-01430
    1. Consortium TtB. (2017). Randomized trial on the effects of a combined physical/cognitive training in aged MCI subjects: the train the brain study. Sci. Rep. 7:39471. 10.1038/srep39471
    1. Craig C. L., Marshall A. L., Sjostrom M., Bauman A. E., Booth M. L., Ainsworth B. E., et al. (2003). International physical activity questionnaire: 12-country reliability and validity. Med. Sci. Sports Exerc. 35 1381–1395. 10.1249/01.mss.0000078924.61453.fb
    1. Dai W., Duan W., Alfaro F. J., Gavrieli A., Kourtelidis F., Novak V. (2017). The resting perfusion pattern associates with functional decline in type 2 diabetes. Neurobiol. Aging 60 192–202. 10.1016/j.neurobiolaging.2017.09.004
    1. De Vis J. B., Peng S.-L., Chen X., Li Y., Liu P., Sur S., et al. (2018). Arterial-spin-labeling (ASL) perfusion MRI predicts cognitive function in elderly individuals: a 4-year longitudinal study. J. Magn. Reson. Imaging 48 449–458. 10.1002/jmri.25938
    1. Department of Economic and Social Affairs Population Division, (2017). World Population Prospects: The Revision, Key Findings and Advance Tables. New York, NY: United Nations.
    1. Dickerson B. C., Sperling R. A. (2008). Functional abnormalities of the medial temporal lobe memory system in mild cognitive impairment and Alzheimer’s disease: insights from functional MRI studies. Neuropsychologia 46 1624–1635. 10.1016/j.neuropsychologia.2007.11.030
    1. Erickson K. I., Voss M. W., Prakash R. S., Basak C., Szabo A., Chaddock L., et al. (2011). Exercise training increases size of hippocampus and improves memory. Proc. Natl. Acad. Sci. U.S.A. 108 3017–3022. 10.1073/pnas.1015950108
    1. Espeland M. A., Luchsinger J. A., Neiberg R. H., Carmichael O., Laurienti P. J., Pi-Sunyer X., et al. (2018). Long term effect of intensive lifestyle intervention on cerebral blood flow. J. Am. Geriatr. Soc. 66 120–126. 10.1111/jgs.15159
    1. Ferrara C. M., Goldberg A. P., Ortmeyer H. K., Ryan A. S. (2006). Effects of aerobic and resistive exercise training on glucose disposal and skeletal muscle metabolism in older Men. J. Gerontol. 61 480–487. 10.1093/gerona/61.5.480
    1. Gevers S., van Osch M. J., Bokkers R. P., Kies D. A., Teeuwisse W. M., Majoie C. B., et al. (2011). Intra- and multicenter reproducibility of pulsed, continuous and pseudo-continuous arterial spin labeling methods for measuring cerebral perfusion. J. Cereb. Blood Flow Metab. 31 1706–1715. 10.1038/jcbfm.2011.10
    1. Gorelick P. B., Scuteri A., Black S. E., Decarli C., Greenberg S. M., Iadecola C., et al. (2011). Vascular contributions to cognitive impairment and dementia: a statement for healthcare professionals from the american heart association/american stroke association. Stroke 42 2672–2713. 10.1161/str.0b013e3182299496
    1. Guiney H., Machado L. (2013). Benefits of regular aerobic exercise for executive functioning in healthy populations. Psychon. Bull. Rev. 20 73–86. 10.3758/s13423-012-0345-4
    1. Hamani C., Mayberg H., Stone S., Laxton A., Haber S., Lozano A. M. (2011). The subcallosal cingulate gyrus in the context of major depression. Biol. Psychiatry 69 301–308. 10.1016/j.biopsych.2010.09.034
    1. Hays C. C., Zlatar Z. Z., Campbell L., Meloy M. J., Wierenga C. E. (2018). Subjective cognitive decline modifies the relationship between cerebral blood flow and memory function in cognitively normal older adults. J. Int. Neuropsychol. Soc. 24 213–223. 10.1017/S135561771700087X
    1. IPAQ Research Committee, (2005). Guidelines for Data Processing and Analysis of the International Physical Activity Questionnaire (IPAQ) - Short and Long Forms. Available at: (accessed February 28, 2019).
    1. Jansen J. F. A., van Bussel F. C. G., van de Haar H. J., van Osch M. J. P., Hofman P. A. M., van Boxtel M. P. J., et al. (2016). Cerebral blood flow, blood supply, and cognition in type 2 diabetes mellitus. Sci Rep. 6:10.
    1. Jenkinson M., Bannister P., Brady M., Smith S. (2002). Improved optimization for the robust and accurate linear registration and motion correction of brain images. Neuroimage 17 825–841. 10.1016/s1053-8119(02)91132-8
    1. Joris P. J., Mensink R. P., Adam T. C., Liu T. T. (2018). Cerebral blood flow measurements in adults: a review on the effects of dietary factors and exercise. Nutrients 10:530. 10.3390/nu10050530
    1. Kirk T., Coalson T., McConnell F. K., Chappell M. A. (2019). Toblerone: Partial Volume Estimation on the Cortical Ribbon. Montreal, QC: ISMRM.
    1. Kleinloog J., Ivanov D., Uludağ K., Mensink R. P., Joris P. J. (2018). Cerebral blood flow measurements in elderly using arterial spin labeling at 3T. Magnetom Flash. 71:109.
    1. Koekkoek P. S., Kappelle L. J., van den Berg E., Rutten G. E., Biessels G. J. (2015). Cognitive function in patients with diabetes mellitus: guidance for daily care. Lancet Neurol. 14 329–340. 10.1016/S1474-4422(14)70249-2
    1. Kullmann S., Heni M., Veit R., Scheffler K., Machann J., Häring H.-U., et al. (2015). Selective insulin resistance in homeostatic and cognitive control brain areas in overweight and obese adults. Diabetes Care 38:1044. 10.2337/dc14-2319
    1. Lacalle-Aurioles M., Mateos-Perez J. M., Guzman-De-Villoria J. A., Olazaran J., Cruz-Orduna I., Aleman-Gomez Y., et al. (2014). Cerebral blood flow is an earlier indicator of perfusion abnormalities than cerebral blood volume in Alzheimer’s disease. J. Cereb. Blood Flow Metab. 34 654–659. 10.1038/jcbfm.2013.241
    1. Leeuwis A. E., Smith L. A., Melbourne A., Hughes A. D., Richards M., Prins N. D., et al. (2018). Cerebral blood flow and cognitive functioning in a community-based, multi-ethnic cohort: the SABRE Study. Front. Aging Neurosci. 10:279. 10.3389/fnagi.2018.00279
    1. Levin O., Netz Y., Ziv G. (2017). The beneficial effects of different types of exercise interventions on motor and cognitive functions in older age: a systematic review. Eur. Rev. Aging Phys. Act 14:20. 10.1186/s11556-017-0189-z
    1. Li W., Liu P., Lu H., Strouse J. J., van Zijl P. C. M., Qin Q. (2017). Fast measurement of blood T1 in the human carotid artery at 3T: accuracy, precision, and reproducibility. Magn. Reson. Med. 77 2296–2302. 10.1002/mrm.26325
    1. Liu T. T., Brown G. G. (2007). Measurement of cerebral perfusion with arterial spin labeling: part 1. Methods. J. Int. Neuropsychol. Soc. 13 517–525.
    1. Lo C.-C., Wang C.-T., Wang X.-J. (2015). Speed-accuracy tradeoff by a control signal with balanced excitation and inhibition. J. Neurophysiol. 114 650–661. 10.1152/jn.00845.2013
    1. Louis W. J., Mander A. G., Dawson M., O’Callaghan C., Conway E. L. (1999). Use of computerized neuropsychological tests (CANTAB) to assess cognitive effects of antihypertensive drugs in the elderly. Cambridge neuropsychological test automated battery. J. Hypertens. 17 1813–1819. 10.1097/00004872-199917121-00005
    1. Maass A., Duzel S., Brigadski T., Goerke M., Becke A., Sobieray U., et al. (2016). Relationships of peripheral IGF-1, VEGF and BDNF levels to exercise-related changes in memory, hippocampal perfusion and volumes in older adults. Neuroimage 131 142–154. 10.1016/j.neuroimage.2015.10.084
    1. Maass A., Duzel S., Goerke M., Becke A., Sobieray U., Neumann K., et al. (2015). Vascular hippocampal plasticity after aerobic exercise in older adults. Mol. Psychiatry 20 585–593. 10.1038/mp.2014.114
    1. Manjón J. V., Coupé P. (2016). VolBrain: an online MRI brain volumetry system. Front. Neuroinform. 10:30. 10.3389/fninf.2016.00030
    1. Matthews D. R., Hosker J. P., Rudenski A. S., Naylor B. A., Treacher D. F., Turner R. C. (1985). Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 28 412–419. 10.1007/bf00280883
    1. Northey J. M., Cherbuin N., Pumpa K. L., Smee D. J., Rattray B. (2017). Exercise interventions for cognitive function in adults older than 50: a systematic review with meta-analysis. Br. J. Sports Med. 52 154–160. 10.1136/bjsports-2016-096587
    1. Pan B., Ge L., Xun Y. Q., Chen Y. J., Gao C. Y., Han X., et al. (2018). Exercise training modalities in patients with type 2 diabetes mellitus: a systematic review and network meta-analysis. Int. J. Behav. Nutr. Phys. Act. 15:72.
    1. Pereira A. C., Huddleston D. E., Brickman A. M., Sosunov A. A., Hen R., McKhann G. M., et al. (2007). An in vivo correlate of exercise-induced neurogenesis in the adult dentate gyrus. Proc. Natl. Acad. Sci. U.S.A. 104:5638.
    1. Preibisch C., Sorg C., Forschler A., Grimmer T., Sax I., Wohlschlager A. M., et al. (2011). Age-related cerebral perfusion changes in the parietal and temporal lobes measured by pulsed arterial spin labeling. J. Magn. Reson. Imaging. 34 1295–1302. 10.1002/jmri.22788
    1. Robbins T. W., James M., Owen A. M., Sahakian B. J., Lawrence A. D., McInnes L., et al. (1998). A study of performance on tests from the CANTAB battery sensitive to frontal lobe dysfunction in a large sample of normal volunteers: implications for theories of executive functioning and cognitive aging. Cambridge neuropsychological test automated battery. J. Int. Neuropsychol. Soc. 4 474–490.
    1. Robbins T. W., James M., Owen A. M., Sahakian B. J., McInnes L., Rabbitt P. (1994). Cambridge neuropsychological test automated battery (CANTAB): a factor analytic study of a large sample of normal elderly volunteers. Dementia 5 266–281. 10.1159/000106735
    1. Roig M., Nordbrandt S., Geertsen S. S., Nielsen J. B. (2013). The effects of cardiovascular exercise on human memory: a review with meta-analysis. Neurosci. Biobehav. Rev. 37 1645–1666. 10.1016/j.neubiorev.2013.06.012
    1. Schoffelen P. F. M., den Hoed M., van Breda E., Plasqui G. (2019). Test-retest variability of VO2max using total-capture indirect calorimetry reveals linear relationship of VO2 and power. Scand. J. Med. Sci. Sports 29 213–222. 10.1111/sms.13324
    1. Smith L. A., Melbourne A., Owen D., Cardoso M. J., Sudre C. H., Tillin T., et al. (2019). Cortical cerebral blood flow in ageing: effects of haematocrit, sex, ethnicity and diabetes. Eur. Radiol. 29 5549–5558. 10.1007/s00330-019-06096-w
    1. Tarumi T., Zhang R. (2017). Cerebral blood flow in normal aging adults: cardiovascular determinants, clinical implications, and aerobic fitness. J. Neurochem. 144 595–608. 10.1111/jnc.14234
    1. Vogt B. A., Finch D. M., Olson C. R. (1992). Functional heterogeneity in cingulate cortex: the anterior executive and posterior evaluative regions. Cereb. Cortex 2 435–443. 10.1093/cercor/2.6.435-a
    1. Voss M. W., Vivar C., Kramer A. F., van Praag H. (2013). Bridging animal and human models of exercise-induced brain plasticity. Trends Cogn. Sci. 17 525–544. 10.1016/j.tics.2013.08.001
    1. Willeumier K. C., Taylor D. V., Amen D. G. (2011). Elevated BMI is associated with decreased blood flow in the prefrontal cortex using SPECT imaging in healthy adults. Obesity 19 1095–1097. 10.1038/oby.2011.16
    1. Wolters F. J., Zonneveld H. I., Hofman A., van der Lugt A., Koudstaal P. J., Vernooij M. W., et al. (2017). Cerebral perfusion and the risk of dementia: a population-based study. Circulation 136 719–728. 10.1161/CIRCULATIONAHA.117.027448
    1. Wolters Frank J., Zonneveld Hazel I., Hofman A., van der Lugt A., Koudstaal Peter J., Vernooij Meike W., et al. (2017). Cerebral perfusion and the risk of Dementia. Circulation 136 719–728.
    1. Woolrich M. W., Behrens T. E. J., Beckmann C. F., Jenkinson M., Smith S. M. (2004). Multilevel linear modelling for FMRI group analysis using Bayesian inference. Neuroimage 21 1732–1747. 10.1016/j.neuroimage.2003.12.023
    1. Yuan P., Raz N. (2014). Prefrontal cortex and executive functions in healthy adults: a meta-analysis of structural neuroimaging studies. Neurosci. Biobehav. Rev. 42 180–192. 10.1016/j.neubiorev.2014.02.005
    1. Zhang N., Gordon M. L., Ma Y., Chi B., Gomar J. J., Peng S., et al. (2018). The age-related perfusion pattern measured with arterial spin labeling MRI in healthy subjects. Front. Aging Neurosci. 10:214. 10.3389/fnagi.2018.00214

Source: PubMed

3
Prenumerera