Comparison of different settings for yellow subthreshold laser treatment in diabetic macular edema

Jay Chhablani, Rayan Alshareef, David Ta Kim, Raja Narayanan, Abhilash Goud, Annie Mathai, Jay Chhablani, Rayan Alshareef, David Ta Kim, Raja Narayanan, Abhilash Goud, Annie Mathai

Abstract

Background: To assess the safety and efficacy of two subthreshold parameters (5 and 15% duty cycle (DC)) compared to standard ETDRS (early treatment of diabetic retinopathy study) continuous wave (CW) laser.

Methods: In this prospective randomized study, 30 eyes from 20 patients with non-center involving macular edema were randomized into 3 different groups: 5% DC, 15% DC and CW navigated modified ETDRS laser treatment. Titration in subthreshold groups was performed with 30% of the threshold power, decided with microsecond pulses. CW laser was titrated to a barely visible burn. All patients underwent microperimetry, thickness measurements and visual acuity examinations at baseline, 6 weeks and 12 weeks post treatment.

Results: At three months follow up, retinal sensitivity was significantly reduced in the CW group by - 2.2 dB whereas in both subthreshold groups, retinal sensitivity increased by 2.4 dB for 5% and 1.9 dB for 15% DC with no significant difference. Retinal volume (mm3) decreased in both subthreshold groups by 0.08 ± 0.3 and 0.12 ± 0.11 in 5 and 15% DC group respectively. Whereas the CW group showed volume increase of 0.55 ± 0.92 (p = 0.02 and 0.01 for 5 and 15% DC groups). Visual acuity remained stable in all 3 groups (- 0.7 letter in 5% DC; 2.11 letters in 15% DC and 0.88 in CW with no significant difference).

Conclusion: Subthreshold microsecond laser was shown to be safe and effective with both 5 and 15% DC as compared to conventional photocoagulation with ETDRS parameters. The 15% DC setting trended to achieve better anatomical, visual and functional outcomes.

Trial registration: Retrospectively registered ( NCT03571659 , 06/26/2018).

Keywords: Diabetic macular edema; Laser photocoagulation; Microperimetry; Micropulse; Microsecond; Subthreshold laser.

Conflict of interest statement

Ethics approval and consent to participate

Approval from ‘Institutional Review Board, L V Prasad Eye Institute, Hyderabad, India. The study was conducted in accordance with the tenets of the Declaration of Helsinki. Written informed consent was obtained from patients.

Consent for publication

Not applicable.

Competing interests

Jay Chhablani is a member of the editorial board.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Figures

Fig. 1
Fig. 1
Continuous wave laser photocoagulation: Color fundus photograph (a) shows signs of extrafoveal macular edema with few microaneurysms in early phase of fluorescein angiogrpahy (FA) (b) with late leakage in late phase (c). Microperimetry map (d) shows retinal sensitivity map at baseline. Spectral domain optical coherence tomography (SD-OCT) (e) shows normal foveal contour with minimal extrafoveal edema. Laser planning map (f) on NAVILAS® device with continuous wave with 60mw power, 100 msec pulse duration, and single burn width apart. At three months follow up FA early and late phases show decrease in overall leakage along with laser scars (g and h). Microperimetry shows decrease in retinal sensitivity (i). SD-OCT shows normal foveal contour with outer retinal damage due to laser scars
Fig. 2
Fig. 2
Subthreshold 5% duty cycle laser photocoagulation: Color fundus photograph (a) shows signs of extrafoveal macular edema with few microaneurysms in early phase of fluorescein angiogrpahy (FA) (b) with late leakage in late phase (c). Microperimetry map (d) shows retinal sensitivity map at baseline. Spectral domain optical coherence tomography (SD-OCT) (e) shows normal foveal contour with minimal extrafoveal edema. Laser planning map (f) on NAVILAS® device with 5%DC with 400mw power, 100 msec pulse duration, and confluent burns. At three months follow up, FA early and late phases show almost same leakage, compared to baseline without any visibile laser scars (g and h). Microperimetry shows improvement in retinal sensitivity (i). SD-OCT shows normal foveal contour without any outer retinal damage
Fig. 3
Fig. 3
Subthreshold 15% duty cycle laser photocoagulation: Color fundus photograph (a) shows signs of extrafoveal macular edema with few microaneurysms in early phase of fluorescein angiogrpahy (FA) (b) with late leakage in late phase (c). Microperimetry map (d) shows retinal sensitivity map at baseline. Spectral domain optical coherence tomography (SD-OCT) (e) shows normal foveal contour. Laser planning map (f) on NAVILAS® device with 15%DC with 240mw power, 100 msec pulse duration, and single burn width apart. At three months follow up, FA early and late phase shows almost same leakage, compared to baseline without any visibile laser scars (g and h). Microperimetry shows improvement in retinal sensitivity (i). SD-OCT shows normal foveal contour without any outer retinal damage
Fig. 4
Fig. 4
Change in best-corrected visual acuity (BCVA) during study visits
Fig. 5
Fig. 5
Change in central retinal thickness during study visits

References

    1. Michaelides M, Kaines A, Hamilton RD, Fraser-Bell S, Rajendram R, Quhill F, Boos CJ, Xing W, Egan C, Peto T. A prospective randomized trial of intravitreal bevacizumab or laser therapy in the management of diabetic macular edema (BOLT study):12-month data: report 2. Ophthalmology. 2010;117(6):1078–1086. e1072. doi: 10.1016/j.ophtha.2010.03.045.
    1. Arevalo JF, Sanchez JG, Fromow-Guerra J, Wu L, Berrocal MH, Farah ME, Cardillo J, Rodríguez FJ. Group P-ACRS: comparison of two doses of primary intravitreal bevacizumab (Avastin) for diffuse diabetic macular edema: results from the pan-American collaborative retina study group (PACORES) at 12-month follow-up. Graefes Arch Clin Exp Ophthalmol. 2009;247(6):735–743. doi: 10.1007/s00417-008-1034-x.
    1. Brown DM, Nguyen QD, Marcus DM, Boyer DS, Patel S, Feiner L, Schlottmann PG, Rundle AC, Zhang J, Rubio RG. Long-term outcomes of ranibizumab therapy for diabetic macular edema: the 36-month results from two phase III trials: RISE and RIDE. Ophthalmology. 2013;120(10):2013–2022. doi: 10.1016/j.ophtha.2013.02.034.
    1. Brown DM, Schmidt-Erfurth U, Do DV, Holz FG, Boyer DS, Midena E, Heier JS, Terasaki H, Kaiser PK, Marcus DM. Intravitreal aflibercept for diabetic macular edema: 100-week results from the VISTA and VIVID studies. Ophthalmology. 2015;122(10):2044–2052. doi: 10.1016/j.ophtha.2015.06.017.
    1. Network DRCR Aflibercept, bevacizumab, or ranibizumab for diabetic macular edema. N Engl J Med. 2015;2015(372):1193–1203.
    1. Wallick CJ, Hansen RN, Campbell J, Kiss S, Kowalski JW, Sullivan SD. Comorbidity and health care resource use among commercially insured non-elderly patients with diabetic macular edema. Ophthalmic Surg Lasers Imaging Retina. 2015;46(7):744–751. doi: 10.3928/23258160-20150730-09.
    1. Gonder JR, Walker VM, Barbeau M, Zaour N, Zachau BH, Hartje JR, Li R. Costs and quality of life in diabetic macular edema: Canadian burden of diabetic macular edema observational study (C-REALITY) J Ophthalmol. 2014;2014:939315. doi: 10.1155/2014/939315.
    1. Photocoagulation for diabetic macular edema Early treatment diabetic retinopathy study report number 1. Early treatment diabetic retinopathy study research group. Archives of ophthalmology (Chicago, Ill : 1960) 1985;103(12):1796–1806. doi: 10.1001/archopht.1985.01050120030015.
    1. Laursen M, Moeller F, Sander B, Sjoelie A. Subthreshold micropulse diode laser treatment in diabetic macular oedema. Br J Ophthalmol. 2004;88(9):1173–1179. doi: 10.1136/bjo.2003.040949.
    1. Figueira J, Khan J, Nunes S, Sivaprasad S, Rosa A, de Abreu JF, Cunha-Vaz JG, Chong N. Prospective randomised controlled trial comparing sub-threshold micropulse diode laser photocoagulation and conventional green laser for clinically significant diabetic macular oedema. Br J Ophthalmol. 2009;93(10):1341–1344. doi: 10.1136/bjo.2008.146712.
    1. Lavinsky D, Cardillo JA, Melo LA, Dare A, Farah ME, Belfort R. Randomized clinical trial evaluating mETDRS versus normal or high-density micropulse photocoagulation for diabetic macular edema. Invest Ophthalmol Vis Sci. 2011;52(7):4314–4323. doi: 10.1167/iovs.10-6828.
    1. Vujosevic S, Bottega E, Casciano M, Pilotto E, Convento E, Midena E. Microperimetry and fundus autofluorescence in diabetic macular edema: subthreshold micropulse diode laser versus modified early treatment diabetic retinopathy study laser photocoagulation. Retina. 2010;30(6):908–916. doi: 10.1097/IAE.0b013e3181c96986.
    1. Venkatesh P, Ramanjulu R, Azad R, Vohra R, Garg S. Subthreshold micropulse diode laser and double frequency neodymium: YAG laser in treatment of diabetic macular edema: a prospective, randomized study using multifocal electroretinography. Photomed Laser Surg. 2011;29(11):727–733. doi: 10.1089/pho.2010.2830.
    1. Koss M, Beger I, Koch F. Subthreshold diode laser micropulse photocoagulation versus intravitreal injections of bevacizumab in the treatment of central serous chorioretinopathy. Eye. 2012;26(2):307–314. doi: 10.1038/eye.2011.282.
    1. Roisman L, Magalhães FP, Lavinsky D, Moraes N, Hirai FE, Cardillo JA, Farah ME. Micropulse diode laser treatment for chronic central serous chorioretinopathy: a randomized pilot trial. Ophthalmic Surg Lasers Imaging Retina. 2013;44(5):465–470. doi: 10.3928/23258160-20130909-08.
    1. Chen S-N, Hwang J-F, Tseng L-F, Lin C-J. Subthreshold diode micropulse photocoagulation for the treatment of chronic central serous chorioretinopathy with juxtafoveal leakage. Ophthalmology. 2008;115(12):2229–2234. doi: 10.1016/j.ophtha.2008.08.026.
    1. Parodi MB, Spasse S, Iacono P, Di Stefano G, Canziani T, Ravalico G. Subthreshold grid laser treatment of macular edema secondary to branch retinal vein occlusion with micropulse infrared (810 nanometer) diode laser. Ophthalmology. 2006;113(12):2237–2242. doi: 10.1016/j.ophtha.2006.05.056.
    1. Luttrull JK, Musch DC, Mainster MA. Subthreshold diode micropulse photocoagulation for the treatment of clinically significant diabetic macular oedema. Br J Ophthalmol. 2005;89(1):74–80. doi: 10.1136/bjo.2004.051540.
    1. Sivaprasad S, Sandhu R, Tandon A, Sayed-Ahmed K, McHugh DA. Subthreshold micropulse diode laser photocoagulation for clinically significant diabetic macular oedema: a three-year follow up. Clin Exp Ophthalmol. 2007;35(7):640–644. doi: 10.1111/j.1442-9071.2007.01566.x.
    1. Othman IS, Eissa SA, Kotb MS, Sadek SH. Subthreshold diode-laser micropulse photocoagulation as a primary and secondary line of treatment in management of diabetic macular edema. Clin Ophthalmol (Auckland, NZ) 2014;8:653.
    1. Inagaki K, Ohkoshi K, Ohde S, Deshpande GA, Ebihara N, Murakami A. Comparative efficacy of pure yellow (577-nm) and 810-nm subthreshold micropulse laser photocoagulation combined with yellow (561–577-nm) direct photocoagulation for diabetic macular edema. Jpn J Ophthalmol. 2015;59(1):21–28. doi: 10.1007/s10384-014-0361-1.
    1. Kwon YH, Lee DK, Kwon OW. The short-term efficacy of subthreshold micropulse yellow (577-nm) laser photocoagulation for diabetic macular edema. Korean J Ophthalmol. 2014;28(5):379–385. doi: 10.3341/kjo.2014.28.5.379.
    1. Vujosevic S, Martini F, Longhin E, Convento E, Cavarzeran F, Midena E. Subthreshold micropulse yellow laser versus subthreshold micropulse infrared laser in center-involving diabetic macular edema: morphologic and functional safety. Retina. 2015;35(8):1594–1603. doi: 10.1097/IAE.0000000000000521.
    1. Yadav N, Jayadev C, Mohan A, Vijayan P, Battu R, Dabir S, Shetty B, Shetty R. Subthreshold micropulse yellow laser (577 nm) in chronic central serous chorioretinopathy: safety profile and treatment outcome. Eye. 2015;29(2):258–265. doi: 10.1038/eye.2014.315.
    1. Pei-Pei W, Shi-Zhou H, Zhen T, Lin L, Ying L, Jiexiong O, Wen-Bo Z, Chen-Jin J. Randomised clinical trial evaluating best-corrected visual acuity and central macular thickness after 532-nm subthreshold laser grid photocoagulation treatment in diabetic macular oedema. Eye. 2015;29(3):313–322. doi: 10.1038/eye.2015.1.
    1. Group ETDRSR Treatment techniques and clinical guidelines for photocoagulation of diabetic macular edema: early treatment diabetic retinopathy study report number 2. Ophthalmology. 1987;94(7):761–774. doi: 10.1016/S0161-6420(87)33527-4.
    1. Lavinsky D, Sramek C, Wang J, Huie P, Dalal R, Mandel Y, Palanker D. Subvisible retinal laser therapy: titration algorithm and tissue response. Retina. 2014;34(1):87–97. doi: 10.1097/IAE.0b013e3182993edc.
    1. Lavinsky D, Palanker D. Nondamaging photothermal therapy for the retina: initial clinical experience with chronic central serous retinopathy. Retina. 2015;35(2):213–222. doi: 10.1097/IAE.0000000000000340.
    1. Muqit MM, Denniss J, Nourrit V, Marcellino GR, Henson DB, Schiessl I, Stanga PE. Spatial and spectral imaging of retinal laser photocoagulation burns. Invest Ophthalmol Vis Sci. 2011;52(2):994–1002. doi: 10.1167/iovs.10-6309.
    1. Kozak I, Oster SF, Cortes MA, Dowell D, Hartmann K, Kim JS, Freeman WR. Clinical evaluation and treatment accuracy in diabetic macular edema using navigated laser photocoagulator NAVILAS. Ophthalmology. 2011;118(6):1119–1124. doi: 10.1016/j.ophtha.2010.10.007.
    1. Kernt M, Cheuteu RE, Cserhati S, Seidensticker F, Liegl RG, Lang J, Haritoglou C, Kampik A, Ulbig MW, Neubauer AS. Pain and accuracy of focal laser treatment for diabetic macular edema using a retinal navigated laser (Navilas®) Clin Ophthalmol (Auckland NZ) 2012;6:289. doi: 10.2147/OPTH.S27859.
    1. Luttrull J, Musch D, Mainster M. Subthreshold diode micropulse photocoagulation for the treatment of clinically significant diabetic macular oedema. Br J Ophthalmol. 2005;89(1):74–80. doi: 10.1136/bjo.2004.051540.
    1. Luttrull JK, Dorin G. Subthreshold diode micropulse laser photocoagulation (SDM) as invisible retinal phototherapy for diabetic macular edema: a review. Curr Diabetes Rev. 2012;8(4):274–284. doi: 10.2174/157339912800840523.
    1. Luttrull JK, Sramek C, Palanker D, Spink CJ, Musch DC. Long-term safety, high-resolution imaging, and tissue temperature modeling of subvisible diode micropulse photocoagulation for retinovascular macular edema. Retina. 2012;32(2):375–386. doi: 10.1097/IAE.0b013e3182206f6c.

Source: PubMed

3
Prenumerera