Cumulative exposure to cell-free HIV in breast milk, rather than feeding pattern per se, identifies postnatally infected infants

Dorine Neveu, Johannes Viljoen, Ruth M Bland, Nicolas Nagot, Siva Danaviah, Anna Coutsoudis, Nigel Campbell Rollins, Hoosen M Coovadia, Philippe Van de Perre, Marie-Louise Newell, Dorine Neveu, Johannes Viljoen, Ruth M Bland, Nicolas Nagot, Siva Danaviah, Anna Coutsoudis, Nigel Campbell Rollins, Hoosen M Coovadia, Philippe Van de Perre, Marie-Louise Newell

Abstract

Background: We quantified the relationship between human immunodeficiency virus (HIV) RNA shedding in breast milk, cumulative RNA exposure, and postnatal transmission, relating timing of infection in the infant to estimated total volume of milk exposure.

Methods: Nested case-control study of 36 infants of HIV-infected mothers. Case patients were infants who acquired HIV infection through breastfeeding from age 6 through 28 weeks, and control subjects were uninfected infants matched on age at obtainment of a breast milk sample. Mothers and infants received peripartum single-dose nevirapine prophylaxis. Feeding data were collected daily; breast milk samples were collected and infant anthropometry was performed at 6 weeks and monthly thereafter. Volume of milk ingested was estimated using infant weight and feeding pattern.

Results: Before HIV acquisition in case patients, feeding pattern (exclusive breastfeeding; median duration, 65 vs 70 days; P = .6) and daily milk intake (mean volume, 638 vs 637 mL; P = .97) did not differ significantly between case patients and control subjects. Case mothers were more likely to shed virus (64% vs 9% always, 22% vs 20.5% intermittently, 14% vs 70.5% never shed; overall, P < .001). Case patients ingested ~15 times more HIV-1 RNA particles than did control subjects (196.5 vs 13 × 10⁶ copies; P < .001). Allowing for maternal antenatal CD4 cell count and plasma HIV-1 load, child sex and duration of mixed breastfeeding, the association between HIV RNA exposure and infection remained statistically significant (P < .001).

Conclusions: Postnatal acquisition of HIV-1 is more strongly associated with cumulative exposure to cell-free particles in breast milk than with feeding mode. Reducing breast milk viral load through antiretroviral therapy to mother or child can further decrease postnatal transmission in exclusively breastfed infants.

Figures

Figure 1.
Figure 1.
A, Daily milk volume before 28 weeks of age in HIV-infected infants (case patients) and in uninfected infants (control subjects). B, Daily milk volume before HIV acquisition in HIV-1–infected infants (case patients) and in uninfected infants (control subjects).

References

    1. UNAIDS/UNICEF/WHO. Rapid advice: revised principles and recommendations on infant feeding in the context of HIV. Geneva, Switzerland: WHO/UNAIDS; 2009.
    1. Coovadia HM, Rollins NC, Bland RM, et al. Mother-to-child transmission of HIV-1 infection during exclusive breastfeeding in the first 6 months of life: an intervention cohort study. Lancet. 2007;369:1107–6.
    1. The Breastfeeding and HIV International Transmission Study Group. Late postnatal transmission of HIV-1 in breast-fed children: an individual patient data meta-analysis. J Infect Dis. 2004;189:2154–66.
    1. Iliff PJ, Piwoz EG, Tavengwa NV, et al. Early exclusive breastfeeding reduces the risk of postnatal HIV-1 transmission and increases HIV-free survival. AIDS. 2005;19:699–708.
    1. Rollins NC, Becquet R, Bland RM, Coutsoudis A, Coovadia HM, Newell ML. Infant feeding, HIV transmission and mortality at 18 months: the need for appropriate choices by mothers and prioritization within programmes. AIDS. 2008;22:2349–57.
    1. Richardson BA, John-Stewart GC, Hughes JP, et al. Breast-milk infectivity in human immunodeficiency virus type 1-infected mothers. J Infect Dis. 2003;187:736–40.
    1. Willumsen JF, Newell ML, Filteau SM, et al. Variation in breastmilk HIV-1 viral load in left and right breasts during the first 3 months of lactation. AIDS. 2001;15:1896–8.
    1. Koulinska IN, Villamor E, Chaplin B, et al. Transmission of cell-free and cell-associated HIV-1 through breast-feeding. J Acquir Immune Defic Syndr. 2006;41:93–9.
    1. Lunney KM, Iliff P, Mutasa K, et al. Associations between breast milk viral load, mastitis, exclusive breast-feeding, and postnatal transmission of HIV. Clin Infect Dis. 2010;50:762–9.
    1. Rousseau CM, Nduati RW, Richardson BA, et al. Association of levels of HIV-1-infected breast milk cells and risk of mother-to-child transmission. J Infect Dis. 2004;190:1880–8.
    1. Petitjean G, Becquart P, Tuaillon E, et al. Isolation and characterization of HIV-1-infected resting CD4+ T lymphocytes in breast milk. J Clin Virol. 2007;39:1–8.
    1. Valea D, Tuaillon E, Al Tabaa Y, et al. Highly activated CD4+ T cells spontaneously producing human immunodeficiency virus type I in breast milk from women treated with antiretroviral Drugs. Vth IAS Conference on HIV Pathogenesis; 19-22 July 2009. Cape Town, South Africa: 2009.
    1. Becquart P, Petitjean G, Tabaa YA, Valea D, Huguet MF, et al. Detection of a large T-cell reservoir able to replicate HIV-1 actively in breast milk. AIDS. 2006;20:1453–5.
    1. Bland R, Coovadia H, Coutsoudis A, Rollins N, Newell ML. Cohort profile: mamanengane or the Africa centre vertical transmission study. Int J Epidemiol. 2009;39:351–60.
    1. Patel D, Bland R, Coovadia H, Rollins N, Coutsoudis A, Newell ML. Breastfeeding, HIV status and weights in South African children: a comparison of HIV-exposed and unexposed children. AIDS. 2010;24:437–45.
    1. Rouet F, Chaix ML, Nerrienet E, Ngo-Giang-Huong N, Plantier JC, et al. Impact of HIV-1 genetic diversity on plasma HIV-1 RNA quantification: usefulness of the Agence Nationale de Recherches sur le SIDA second-generation long terminal repeat-based real-time reverse transcriptase polymerase chain reaction test. J Acquir Immune Defic Syndr. 2007;45:380–8.
    1. Ghosh MK, Kuhn L, West J, et al. Quantitation of human immunodeficiency virus type 1 in breast milk. J Clin Microbiol. 2003;41:2465–70.
    1. Rousseau CM, Nduati RW, Richardson BA, et al. Longitudinal analysis of human immunodeficiency virus type 1 RNA in breast milk and of its relationship to infant infection and maternal disease. J Infect Dis. 2003;187:741–7.
    1. Arcus-Arth A, Krowech G, Zeise L. Breast milk and lipid intake distributions for assessing cumulative exposure and risk. J Expo Anal Environ Epidemiol. 2005;15:357–65.
    1. Haisma H, Coward WA, Albernaz E, et al. Breast milk and energy intake in exclusively, predominantly, and partially breast-fed infants. Eur J Clin Nutr. 2003;57:1633–42.
    1. Bland RM, Becquet R, Rollins NC, Coutsoudis A, Coovadia HM, Newell ML. Breast health problems are rare in both HIV-infected and HIV-uninfected women who receive counseling and support for breast-feeding in South Africa. Clin Infect Dis. 2007;45:1502–10.
    1. Gaillard P, Piwoz E, Farley TM. Collection of standardized information on infant feeding in the context of mother-to-child transmission of HIV. Stat Med. 2001;20:3525–37.
    1. Alioum A, Dabis F, Dequae-Merchadou L, et al. Estimating the efficacy of interventions to prevent mother-to-child transmission of HIV in breast-feeding populations: development of a consensus methodology. Stat Med. 2001;20:3539–6.
    1. Riordan J, Auerbach K. Breastfeeding and human lactation. Sudbury, MA: Jones & Bartlett Publishers; 1999.
    1. Neville MC, Keller R, Seacat J, et al. Studies in human lactation: milk volumes in lactating women during the onset of lactation and full lactation. Am J Clin Nutr. 1988;48:1375–86.
    1. Willumsen JF, Filteau SM, Coutsoudis A, et al. Breastmilk RNA viral load in HIV-infected South African women: effects of subclinical mastitis and infant feeding. AIDS. 2003;17:407–14.
    1. Semrau K, Ghosh M, Kankasa C, et al. Temporal and lateral dynamics of HIV shedding and elevated sodium in breast milk among HIV-positive mothers during the first 4 months of breast-feeding. J Acquir Immune Defic Syndr. 2008;47:320–8.
    1. Dimitrov DS, Willey RL, Sato H, Chang LJ, Blumenthal R, Martin MA. Quantitation of human immunodeficiency virus type 1 infection kinetics. J Virol. 1993;67:2182–90.
    1. Tuaillon E, Valea D, Becquart P, et al. Human milk-derived B cells: a highly activated switched memory cell population primed to secrete antibodies. J Immunol. 2009;182:7155–62.
    1. Lehman DA, Chung MH, John-Stewart GC, et al. HIV-1 persists in breast milk cells despite antiretroviral treatment to prevent mother-to-child transmission. AIDS. 2008;22:1475–85.

Source: PubMed

3
Prenumerera