Cortical disinhibition occurs in chronic neuropathic, but not in chronic nociceptive pain

Peter Schwenkreis, Andrea Scherens, Anne-Kathrin Rönnau, Oliver Höffken, Martin Tegenthoff, Christoph Maier, Peter Schwenkreis, Andrea Scherens, Anne-Kathrin Rönnau, Oliver Höffken, Martin Tegenthoff, Christoph Maier

Abstract

Background: The aim of this study was to examine the relationship between chronic neuropathic pain after incomplete peripheral nerve lesion, chronic nociceptive pain due to osteoarthritis, and the excitability of the motor cortex assessed by transcranial magnetic stimulation (TMS). Hence in 26 patients with neuropathic pain resulting from an isolated incomplete lesion of the median or ulnar nerve (neuralgia), 20 patients with painful osteoarthritis of the hand, and 14 healthy control subjects, the excitability of the motor cortex was tested using paired-pulse TMS to assess intracortical inhibition and facilitation. These excitability parameters were compared between groups, and the relationship between excitability parameters and clinical parameters was examined.

Results: We found a significant reduction of intracortical inhibition in the hemisphere contralateral to the lesioned nerve in the neuralgia patients. Intracortical inhibition in the ipsilateral hemisphere of neuralgia patients and in both hemispheres of osteoarthritis patients did not significantly differ from the control group. Disinhibition was significantly more pronounced in neuralgia patients with moderate/severe pain intensity than in patients with mild pain intensity, whereas the relative compound motor action potential as a parameter of nerve injury severity did not correlate with the amount of disinhibition.

Conclusions: Our results suggest a close relationship between motor cortex inhibition and chronic neuropathic pain in the neuralgia patients, which is independent from nerve injury severity. The lack of cortical disinhibition in patients with painful osteoarthritis points at differences in the pathophysiological processes of different chronic pain conditions with respect to the involvement of different brain circuitry.

Figures

Figure 1
Figure 1
Intracortical inhibition (ICI). Mean ICI (relative amplitude, expressed in %) in the neuralgia group, the osteoarthritis group and the control group. For the neuralgia group, results obtained from a muscle supplied by the lesioned nerve and results obtained from a muscle supplied by the unlesioned nerve are shown. Significant p values of post-hoc t-test are shown. Error bars indicate standard deviation.
Figure 2
Figure 2
Intracortical facilitation (ICF). Mean ICF (relative amplitude, expressed in %) in the neuralgia group, the osteoarthritis group and the control group. For the neuralgia group, results obtained from a muscle supplied by the lesioned nerve and results obtained from a muscle supplied by the unlesioned nerve are shown. Note that there are no significant differences between groups. Error bars indicate standard deviation.

References

    1. Donoghue JP, Suner S, Sanes JN. Dynamic organization of primary motor cortex output to target muscles in adult rats. II. Rapid reorganization following motor nerve lesions. Exp Brain Res. 1990;11:492–503. doi: 10.1007/BF00229319.
    1. Sanes JN, Suner S, Donoghue JP. Dynamic organization of primary motor cortex output to target muscles in adult rats. I. Long-term patterns of reorganization following motor or mixed peripheral nerve lesions. Exp Brain Res. 1990;11:479–491. doi: 10.1007/BF00229318.
    1. Sanes JN, Suner S, Lando JF, Donoghue JP. Rapid reorganization of adult rat motor cortex somatic representation patterns after motor nerve injury. Proc Natl Acad Sci USA. 1988;11(6):2003–2007. doi: 10.1073/pnas.85.6.2003.
    1. Cohen LG, Bandinelli S, Findley TW, Hallett M. Motor reorganization after upper limb amputation in man. A study with focal magnetic stimulation. Brain. 1991;11(Pt 1B):615–627. doi: 10.1093/brain/114.1.615.
    1. Pascual-Leone A, Peris M, Tormos JM, Pascual AP, Catala MD. Reorganization of human cortical motor output maps following traumatic forearm amputation. Neuroreport. 1996;11(13):2068–2070. doi: 10.1097/00001756-199609020-00002.
    1. Karl A, Birbaumer N, Lutzenberger W, Cohen LG, Flor H. Reorganization of motor and somatosensory cortex in upper extremity amputees with phantom limb pain. J Neurosci. 2001;11(10):3609–3618.
    1. Schwenkreis P, Witscher K, Janssen F, Pleger B, Dertwinkel R, Zenz M, Malin JP, Tegenthoff M. Assessment of reorganization in the sensorimotor cortex after upper limb amputation. Clin Neurophysiol. 2001;11(4):627–635. doi: 10.1016/S1388-2457(01)00486-2.
    1. Maihöfner C, Baron R, DeCol R, Binder A, Birklein F, Deuschl G, Handwerker HO, Schattschneider J. The motor system shows adaptive changes in complex regional pain syndrome. Brain. 2007;11(Pt 10):2671–2687. doi: 10.1093/brain/awm131.
    1. Krause P, Förderreuther S, Straube A. TMS motor cortical brain mapping in patients with complex regional pain syndrome type I. Clin Neurophysiol. 2006;11(1):169–176. doi: 10.1016/j.clinph.2005.09.012.
    1. Jacobs KM, Donoghue JP. Reshaping the cortical motor map by unmasking latent intracortical connections. Science. 1991;11:944–947. doi: 10.1126/science.2000496.
    1. Hess G, Donoghue JP. Long-term potentiation of horizontal connections provides a mechanism to reorganize cortical motor maps. J Neurophysiol. 1994;11:2543–2547.
    1. Schwenkreis P, Witscher K, Janssen F, Dertwinkel R, Zenz M, Malin JP, Tegenthoff M. Changes of cortical excitability in patients with upper limb amputation. Neurosci Lett. 2000;11(2):143–146. doi: 10.1016/S0304-3940(00)01517-2.
    1. Chen R, Corwell B, Yaseen Z, Hallett M, Cohen LG. Mechanisms of cortical reorganization in lower-limb amputees. J Neurosci. 1998;11(9):3443–3450.
    1. Lefaucheur JP, Drouot X, Menard-Lefaucheur I, Keravel Y, Nguyen JP. Motor cortex rTMS restores defective intracortical inhibition in chronic neuropathic pain. Neurology. 2006;11(9):1568–1574. doi: 10.1212/01.wnl.0000242731.10074.3c.
    1. Schwenkreis P, Janssen F, Rommel O, Pleger B, Völker B, Hosbach I, Dertwinkel R, Maier C, Tegenthoff M. Bilateral motor cortex disinhibition in complex regional pain syndrome (CRPS) type I of the hand. Neurology. 2003;11:515–519.
    1. Zelman DC, Dukes E, Brandenburg N, Bostrom A, Gore M. Identification of cut-points for mild, moderate and severe pain due to diabetic peripheral neuropathy. Pain. 2005;11(1-2):29–36. doi: 10.1016/j.pain.2005.01.028.
    1. Moore A, Mhuircheartaigh R, Straube S, Derry S, McQuay H. Defining the border between mild and moderate pain. Eur J Pain. 2009;11:S227.
    1. Tinazzi M, Zanette G, Volpato D, Testoni R, Bonato C, Manganotti P, Miniussi C, Fiaschi A. Neurophysiological evidence of neuroplasticity at multiple levels of the somatosensory system in patients with carpal tunnel syndrome. Brain. 1998;11(Pt 9):1785–1794. doi: 10.1093/brain/121.9.1785.
    1. Napadow V, Kettner N, Ryan A, Kwong KK, Audette J, Hui KK. Somatosensory cortical plasticity in carpal tunnel syndrome--a cross-sectional fMRI evaluation. Neuroimage. 2006;11(2):520–530. doi: 10.1016/j.neuroimage.2005.12.017.
    1. Druschky K, Kaltenhauser M, Hummel C, Druschky A, Huk WJ, Stefan H, Neundorfer B. Alteration of the somatosensory cortical map in peripheral mononeuropathy due to carpal tunnel syndrome. Neuroreport. 2000;11(17):3925–3930. doi: 10.1097/00001756-200011270-00063.
    1. Tecchio F, Padua L, Aprile I, Rossini PM. Carpal tunnel syndrome modifies sensory hand cortical somatotopy: a MEG study. Hum Brain Mapp. 2002;11(1):28–36. doi: 10.1002/hbm.10049.
    1. Tinazzi M, Zanette G, Polo A, Volpato D, Manganotti P, Bonato C, Testoni R, Fiaschi A. Transient deafferentation in humans induces rapid modulation of primary sensory cortex not associated with subcortical changes: a somatosensory evoked potential study. Neurosci Lett. 1997;11(1):21–24. doi: 10.1016/S0304-3940(97)13382-1.
    1. Rossini PM, Martino G, Narici L, Pasquarelli A, Peresson M, Pizzella V, Tecchio F, Torrioli G, Romani GL. Short-term brain 'plasticity' in humans: transient finger representation changes in sensory cortex somatotopy following ischemic anesthesia. Brain Res. 1994;11(1-2):169–177. doi: 10.1016/0006-8993(94)90919-9.
    1. Zhuo M. Cortical excitation and chronic pain. Trends Neurosci. 2008;11(4):199–207. doi: 10.1016/j.tins.2008.01.003.
    1. Peyron R, Faillenot I, Mertens P, Laurent B, Garcia-Larrea L. Motor cortex stimulation in neuropathic pain. Correlations between analgesic effect and hemodynamic changes in the brain. A PET study. Neuroimage. 2007;11(1):310–321. doi: 10.1016/j.neuroimage.2006.08.037.
    1. Garcia-Larrea L, Peyron R, Mertens P, Gregoire MC, Lavenne F, Bonnefoi F, Mauguiere F, Laurent B, Sindou M. Positron emission tomography during motor cortex stimulation for pain control. Stereotact Funct Neurosurg. 1997;11(1-4 Pt 1):141–148. doi: 10.1159/000099915.
    1. Irlbacher K, Meyer BU, Voss M, Brandt SA, Roricht S. Spatial reorganization of cortical motor output maps of stump muscles in human upper-limb amputees. Neurosci Lett. 2002;11(3):129–132. doi: 10.1016/S0304-3940(02)00039-3.
    1. Lefaucheur JP, Hatem S, Nineb A, Menard-Lefaucheur I, Wendling S, Keravel Y, Nguyen JP. Somatotopic organization of the analgesic effects of motor cortex rTMS in neuropathic pain. Neurology. 2006;11(11):1998–2004. doi: 10.1212/01.wnl.0000247138.85330.88.
    1. Garry MI, Thomson RH. The effect of test TMS intensity on short-interval intracortical inhibition in different excitability states. Exp Brain Res. 2009;11(2):267–274. doi: 10.1007/s00221-008-1620-5.
    1. Lackmy A, Marchand-Pauvert V. The estimation of short intra-cortical inhibition depends on the proportion of spinal motoneurones activated by corticospinal inputs. Clin Neurophysiol. 2010;11(4):612–621. doi: 10.1016/j.clinph.2009.12.011.
    1. Treede RD, Jensen TS, Campbell JN, Cruccu G, Dostrovsky JO, Griffin JW, Hansson P, Hughes R, Nurmikko T, Serra J. Neuropathic pain: redefinition and a grading system for clinical and research purposes. Neurology. 2008;11(18):1630–1635. doi: 10.1212/01.wnl.0000282763.29778.59.
    1. Woolf CJ, Salter MW. Neuronal plasticity: increasing the gain in pain. Science. 2000;11(5472):1765–1769. doi: 10.1126/science.288.5472.1765.
    1. Baliki MN, Geha PY, Apkarian AV. Spontaneous pain and brain activity in neuropathic pain: functional MRI and pharmacologic functional MRI studies. Curr Pain Headache Rep. 2007;11(3):171–177. doi: 10.1007/s11916-007-0187-3.
    1. Apkarian AV, Sosa Y, Sonty S, Levy RM, Harden RN, Parrish TB, Gitelman DR. Chronic back pain is associated with decreased prefrontal and thalamic gray matter density. J Neurosci. 2004;11(46):10410–10415. doi: 10.1523/JNEUROSCI.2541-04.2004.
    1. Geha PY, Baliki MN, Chialvo DR, Harden RN, Paice JA, Apkarian AV. Brain activity for spontaneous pain of postherpetic neuralgia and its modulation by lidocaine patch therapy. Pain. 2007;11(1-2):88–100. doi: 10.1016/j.pain.2006.09.014.
    1. Baliki MN, Chialvo DR, Geha PY, Levy RM, Harden RN, Parrish TB, Apkarian AV. Chronic pain and the emotional brain: specific brain activity associated with spontaneous fluctuations of intensity of chronic back pain. J Neurosci. 2006;11(47):12165–12173. doi: 10.1523/JNEUROSCI.3576-06.2006.
    1. Witting N, Kupers RC, Svensson P, Jensen TS. A PET activation study of brush-evoked allodynia in patients with nerve injury pain. Pain. 2006;11(1-2):145–154. doi: 10.1016/j.pain.2005.10.034.
    1. Moisset X, Bouhassira D. Brain imaging of neuropathic pain. Neuroimage. 2007;11(Suppl 1):S80–88. doi: 10.1016/j.neuroimage.2007.03.054.
    1. Juottonen K, Gockel M, Silen T, Hurri H, Hari R, Forss N. Altered central sensorimotor processing in patients with complex regional pain syndrome. Pain. 2002;11(3):315–323. doi: 10.1016/S0304-3959(02)00119-7.
    1. Wu T, Sommer M, Tergau F, Paulus W. Lasting influence of repetitive transcranial magnetic stimulation on intracortical excitability in human subjects. Neurosci Lett. 2000;11(1):37–40. doi: 10.1016/S0304-3940(00)01132-0.
    1. Ugawa Y, Hanajima R, Kanazawa I. Motor cortex inhibition in patients with ataxia. Electroencephalogr Clin Neurophysiol. 1994;11(3):225–229. doi: 10.1016/0168-5597(94)90044-2.
    1. Liepert J, Classen J, Cohen LG, Hallett M. Task-dependent changes of intracortical inhibition. Exp Brain Res. 1998;11(3):421–426. doi: 10.1007/s002210050296.
    1. Zoghi M, Pearce SL, Nordstrom MA. Differential modulation of intracortical inhibition in human motor cortex during selective activation of an intrinsic hand muscle. J Physiol. 2003;11(Pt 3):933–946. doi: 10.1113/jphysiol.2003.042606.
    1. Rothwell JC, Hallett M, Berardelli A, Eisen A, Rossini P, Paulus W. Magnetic stimulation: motor evoked potentials. The International Federation of Clinical Neurophysiology. Electroencephalogr Clin Neurophysiol Suppl. 1999;11:97–103.
    1. Kujirai T, Caramia MD, Rothwell JC, Day BL, Thompson PD, Ferbert A, Wroe S, Asselman P, Marsden CD. Corticocortical inhibition in human motor cortex. J Physiol (Lond) 1993;11:501–519.
    1. Ziemann U, Chen R, Cohen LG, Hallett M. Dextromethorphan decreases the excitability of the human motor cortex. Neurology. 1998;11(5):1320–1324.
    1. Osuch EA, Benson BE, Luckenbaugh DA, Geraci M, Post RM, McCann U. Repetitive TMS combined with exposure therapy for PTSD: a preliminary study. J Anxiety Disord. 2009;11(1):54–59. doi: 10.1016/j.janxdis.2008.03.015.

Source: PubMed

3
Prenumerera