Effects of sitagliptin on intrahepatic lipid content in patients with non-alcoholic fatty liver disease

Xingchun Wang, Bangfeng Zhao, Hang Sun, Hui You, Shen Qu, Xingchun Wang, Bangfeng Zhao, Hang Sun, Hui You, Shen Qu

Abstract

Purpose: Dipeptidyl peptidase-4 inhibitors (DPP-4I), key regulators of the actions of incretin hormones, exert anti-hyperglycemic effects in type 2 diabetes mellitus (T2DM) patients. A major unanswered question concerns the potential ability of DPP-4I to improve intrahepatic lipid (IHL) content in nonalcoholic fatty liver disease (NAFLD) patients. The aim of this study was to evaluate the effects of sitagliptin on IHL in NAFLD patients.

Methods: A prospective, 24-week, single-center, open-label, comparative study enrolled 68 Chinese NAFLD patients with T2DM. Subjects were randomly divided into 4 groups: control group who did not take medicine (14 patients); sitagliptin group who received sitagliptin treatment (100mg per day) (17 patients); metformin group who received metformin (500mg three times per day) (17 patients); and sitagliptin plus metformin group who received sitagliptin (100mg per day) and metformin (500 mg three times per day) (20 patients). IHL, physical examination (waist circumstances, WC; body mass index, BMI), glucose-lipid metabolism (fasting plasma glucose, FPG; hemoglobin A1c, Hb1A1c; triglycerides; cholesterol; alanine aminotransferase, ALT; aspartate aminotransferase, AST) were measured at baseline and at 24 weeks.

Results: 1) WC and BMI were decreased significantly in all groups except control group (all P<0.05). 2) There was no statistically significant difference in IHL among the sitagliptin, metformin, and sitagliptin plus metformin groups before and after treatment(all P>0.05). Only the metformin group showed a statistically significant difference in IHL before and after treatment(P<0.05). 3) Sitagliptin treatment led to a significant decrease in FBG and HbA1c when compared with the control group (all P<0.01). Additionally, HhA1c was significant decreased in the sitagliptin group when compared with the metformin group (P< 0.05). 4) HbA1c and FBG were decreased by 0.8% and 0.7 mmol/l respectively and the percentage of patients with HbA1c less than 7% was 65% with sitagliptin treatment.

Conclusion: Sitagliptin improves abnormalities in glucose metabolism, but not reduces the IHL in T2DM with NAFLD, indicating that sitagliptin might be a therapeutic option for treatment of NAFLD indirectly while not directly on IHL. Clinical Trial Registration: https://ichgcp.net/clinical-trials-registry/NCT05480007" title="See in ClinicalTrials.gov">NCT05480007.

Keywords: glucose; intrahepatic lipid; metabolism; nonalcoholic fatty liver disease; sitagliptin.

Conflict of interest statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2022 Wang, Zhao, Sun, You and Qu.

References

    1. Vanni E, Bugianesi E, Kotronen A, De Minicis S, Yki-Jarvinen H, Svegliati-Baroni G. From the metabolic syndrome to NAFLD or vice versa? Digestive liver Dis Off J Ital Soc Gastroenterol Ital Assoc Study Liver (2010) 42(5):320–30. doi: 10.1016/j.dld.2010.01.016
    1. Sanyal AJ. AGA technical review on nonalcoholic fatty liver disease. Gastroenterology (2002) 123(5):1705–25. doi: 10.1053/gast.2002.36572
    1. Marchesini G, Brizi M, Morselli-Labate AM, Bianchi G, Bugianesi E, McCullough AJ, et al. . Association of nonalcoholic fatty liver disease with insulin resistance. Am J Med (1999) 107(5):450–5. doi: 10.1016/s0002-9343(99)00271-5
    1. Angulo P. Nonalcoholic fatty liver disease. Rev gastroenterologia Mexico (2005) 70(Suppl 3):52–6. doi: 10.1056/NEJMra011775
    1. Qureshi K, Abrams GA. Metabolic liver disease of obesity and role of adipose tissue in the pathogenesis of nonalcoholic fatty liver disease. World J Gastroenterol WJG (2007) 13(26):3540–53. doi: 10.3748/wjg.v13.i26.3540
    1. Kotronen A, Westerbacka J, Bergholm R, Pietilainen KH, Yki-Jarvinen H. Liver fat in the metabolic syndrome. J Clin Endocrinol Metab (2007) 92(9):3490–7. doi: 10.1210/jc.2007-0482
    1. Yki-Jarvinen H. Fat in the liver and insulin resistance. Ann Med (2005) 37(5):347–56. doi: 10.1080/07853890510037383
    1. Lazo M, Solga SF, Horska A, Bonekamp S, Diehl AM, Brancati FL, et al. . Effect of a 12-month intensive lifestyle intervention on hepatic steatosis in adults with type 2 diabetes. Diabetes Care (2010) 33(10):2156–63. doi: 10.2337/dc10-0856
    1. Rafiq N, Younossi ZM. Effects of weight loss on nonalcoholic fatty liver disease. Semin Liver Disease (2008) 28(4):427–33. doi: 10.1055/s-0028-1091986
    1. Duvnjak M, Tomasic V, Gomercic M, Smircic Duvnjak L, Barsic N, Lerotic I. Therapy of nonalcoholic fatty liver disease: Current status. J Physiol Pharmacol an Off J Polish Physiol Society (2009) 60 Suppl 7:57–66. doi: 10.1111/j.1365-2036.2004.01888.x
    1. Uygun A, Kadayifci A, Isik AT, Ozgurtas T, Deveci S, Tuzun A, et al. . Metformin in the treatment of patients with non-alcoholic steatohepatitis. Alimentary Pharmacol Ther (2004) 19(5):537–44.
    1. Neuschwander-Tetri BA. NASH: Thiazolidinediones for NASH–one pill doesn't fix everything. Nat Rev Gastroenterol Hepatol (2010) 7(5):243–4. doi: 10.1038/nrgastro.2010.50
    1. Lin HZ, Yang SQ, Chuckaree C, Kuhajda F, Ronnet G, Diehl AM. Metformin reverses fatty liver disease in obese, leptin-deficient mice. Nat Med (2000) 6(9):998–1003. doi: 10.1038/79697
    1. Bajaj M, Suraamornkul S, Hardies LJ, Pratipanawatr T, DeFronzo RA. Plasma resistin concentration, hepatic fat content, and hepatic and peripheral insulin resistance in pioglitazone-treated type II diabetic patients. Int J Obes related Metab Disord J Int Assoc Study Obes (2004) 28(6):783–9. doi: 10.1038/sj.ijo.0802625
    1. Caldwell SH, Hespenheide EE, Redick JA, Iezzoni JC, Battle EH, Sheppard BL. A pilot study of a thiazolidinedione, troglitazone, in nonalcoholic steatohepatitis. Am J Gastroenterology (2001) 96(2):519–25. doi: 10.1111/j.1572-0241.2001.03553.x
    1. Vilsboll T, Krarup T, Madsbad S, Holst JJ. Both GLP-1 and GIP are insulinotropic at basal and postprandial glucose levels and contribute nearly equally to the incretin effect of a meal in healthy subjects. Regul Peptides (2003) 114(2-3):115–21. doi: 10.1016/s0167-0115(03)00111-3
    1. Ahren B, Landin-Olsson M, Jansson PA, Svensson M, Holmes D, Schweizer A. Inhibition of dipeptidyl peptidase-4 reduces glycemia, sustains insulin levels, and reduces glucagon levels in type 2 diabetes. J Clin Endocrinol Metab (2004) 89(5):2078–84. doi: 10.1210/jc.2003-031907
    1. Hansotia T, Drucker DJ. GIP and GLP-1 as incretin hormones: lessons from single and double incretin receptor knockout mice. Regul Peptides (2005) 128(2):125–34. doi: 10.1016/j.regpep.2004.07.019
    1. Ahren B, Hughes TE. Inhibition of dipeptidyl peptidase-4 augments insulin secretion in response to exogenously administered glucagon-like peptide-1, glucose-dependent insulinotropic polypeptide, pituitary adenylate cyclase-activating polypeptide, and gastrin-releasing peptide in mice. Endocrinology (2005) 146(4):2055–9. doi: 10.1210/en.2004-1174
    1. Liu LB, Wang YP, Pan XD, Jiang SY, Chen Z. [Exendin-4 protected murine MIN6 pancreatic beta-cells from oxidative stress-induced apoptosis via down-regulation of NF-kappaB-iNOS-NO pathway]. Yao xue xue bao = Acta Pharm Sinica (2008) 43(7):690–4.
    1. Amori RE, Lau J, Pittas AG. Efficacy and safety of incretin therapy in type 2 diabetes: systematic review and meta-analysis. JAMA (2007) 298(2):194–206. doi: 10.1001/jama.298.2.194
    1. Neumiller JJ, Wood L, Campbell RK. Dipeptidyl peptidase-4 inhibitors for the treatment of type 2 diabetes mellitus. Pharmacotherapy (2010) 30(5):463–84. doi: 10.1592/phco.30.5.463
    1. Kim YG, Hahn S, Oh TJ, Kwak SH, Park KS, Cho YM. Differences in the glucose-lowering efficacy of dipeptidyl peptidase-4 inhibitors between asians and non-asians: a systematic review and meta-analysis. Diabetologia (2013) 56(4):696–708. doi: 10.1007/s00125-012-2827-3
    1. Mohan V, Yang W, Son HY, Xu L, Noble L, Langdon RB, et al. . Efficacy and safety of sitagliptin in the treatment of patients with type 2 diabetes in China, India, and Korea. Diabetes Res Clin Practice (2009) 83(1):106–16. doi: 10.1016/j.diabres.2008.10.009
    1. Riche DM, East HE, Riche KD. Impact of sitagliptin on markers of beta-cell function: a meta-analysis. Am J Med Sci (2009) 337(5):321–8. doi: 10.1097/MAJ.0b013e31818eb721
    1. Seck T, Nauck M, Sheng D, Sunga S, Davies MJ, Stein PP, et al. . Safety and efficacy of treatment with sitagliptin or glipizide in patients with type 2 diabetes inadequately controlled on metformin: A 2-year study. Int J Clin Practice (2010) 64(5):562–76. doi: 10.1111/j.1742-1241.2010.02353.x
    1. Gupta NA, Mells J, Dunham RM, Grakoui A, Handy J, Saxena NK, et al. . Glucagon-like peptide-1 receptor is present on human hepatocytes and has a direct role in decreasing hepatic steatosis in vitro by modulating elements of the insulin signaling pathway. Hepatol (Baltimore Md) (2010) 51(5):1584–92. doi: 10.1002/hep.23569
    1. Iwasaki T, Tomeno W, Yoneda M, Inamori M, Shirakawa J, Imajo K, et al. . Non-alcoholic fatty liver disease adversely affects the glycemic control afforded by sitagliptin. Hepato-gastroenterology (2012) 59(117):1522–5. doi: 10.5754/hge11689
    1. Fukuhara T, Hyogo H, Ochi H, Fujino H, Kan H, Naeshiro N, et al. . Efficacy and safety of sitagliptin for the treatment of nonalcoholic fatty liver disease with type 2 diabetes mellitus. Hepato-gastroenterology (2014) 61(130):323–8.
    1. Arase Y, Kawamura Y, Seko Y, Kobayashi M, Suzuki F, Suzuki Y, et al. . Efficacy and safety in sitagliptin therapy for diabetes complicated by non-alcoholic fatty liver disease. Hepatol Res Off J Japan Soc Hepatol (2013) 43(11):1163–8. doi: 10.1111/hepr.12077
    1. Iwasaki T, Yoneda M, Inamori M, Shirakawa J, Higurashi T, Maeda S, et al. . Sitagliptin as a novel treatment agent for non-alcoholic fatty liver disease patients with type 2 diabetes mellitus. Hepato-gastroenterology (2011) 58(112):2103–5. doi: 10.5754/hge11263
    1. Ohki T, Isogawa A, Iwamoto M, Ohsugi M, Yoshida H, Toda N, et al. . The effectiveness of liraglutide in nonalcoholic fatty liver disease patients with type 2 diabetes mellitus compared to sitagliptin and pioglitazone. Sci World J (2012) 2012:496453. doi: 10.1100/2012/496453
    1. Kern M, Kloting N, Niessen HG, Thomas L, Stiller D, Mark M, et al. . Linagliptin improves insulin sensitivity and hepatic steatosis in diet-induced obesity. PloS One (2012) 7(6):e38744. doi: 10.1371/journal.pone.0038744
    1. Jung YA, Choi YK, Jung GS, Seo HY, Kim HS, Jang BK, et al. . Sitagliptin attenuates methionine/choline-deficient diet-induced steatohepatitis. Diabetes Res Clin practice (2014) 105(1):47–57. doi: 10.1016/j.diabres.2014.04.028
    1. Ahmed MH, Abu EO, Byrne CD. Non-alcoholic fatty liver disease (NAFLD): new challenge for general practitioners and important burden for health authorities? Primary Care Diabetes (2010) 4(3):129–37. doi: 10.1016/j.pcd.2010.02.004
    1. Davignon J, Ganz P. Role of endothelial dysfunction in atherosclerosis. Circulation (2004) 109(23 Suppl 1):Iii27–32. doi: 10.1161/01.CIR.0000131515.03336.f8
    1. O'Leary DH, Polak JF. Intima-media thickness: a tool for atherosclerosis imaging and event prediction. Am J Cardiol (2002) 90(10c):18l–21l. doi: 10.1016/s0002-9149(02)02957-0
    1. Sung KC, Ryan MC, Wilson AM. The severity of nonalcoholic fatty liver disease is associated with increased cardiovascular risk in a large cohort of non-obese Asian subjects. Atherosclerosis (2009) 203(2):581–6. doi: 10.1016/j.atherosclerosis.2008.07.024
    1. Kirk E, Reeds DN, Finck BN, Mayurranjan SM, Patterson BW, Klein S. Dietary fat and carbohydrates differentially alter insulin sensitivity during caloric restriction. Gastroenterology (2009) 136(5):1552–60. doi: 10.1053/j.gastro.2009.01.048
    1. Tamura Y, Tanaka Y, Sato F, Choi JB, Watada H, Niwa M, et al. . Effects of diet and exercise on muscle and liver intracellular lipid contents and insulin sensitivity in type 2 diabetic patients. J Clin Endocrinol Metab (2005) 90(6):3191–6. doi: 10.1210/jc.2004-1959
    1. Sato F, Tamura Y, Watada H, Kumashiro N, Igarashi Y, Uchino H, et al. . Effects of diet-induced moderate weight reduction on intrahepatic and intramyocellular triglycerides and glucose metabolism in obese subjects. J Clin Endocrinol Metab (2007) 92(8):3326–9. doi: 10.1210/jc.2006-2384
    1. Sada Y, Katabami T, Asai S, Sato T, Furukawa K, Ishii S, et al. . Intrahepatic lipid content is linked to insulin resistance in obese subjects. Obes Res Clin practice (2011) 5(2):e79-e156. doi: 10.1016/j.orcp.2010.12.007
    1. Ricci PE, Pitt A, Keller PJ, Coons SW, Heiserman JE. Effect of voxel position on single-voxel MR spectroscopy findings. AJNR Am J Neuroradiology (2000) 21(2):367–74.
    1. Lee JK, Dixon WT, Ling D, Levitt RG, Murphy WA, Jr. Fatty infiltration of the liver: demonstration by proton spectroscopic imaging. Preliminary Observations Radiology (1984) 153(1):195–201. doi: 10.1148/radiology.153.1.6089264
    1. Ogawa W, Kasuga M. Cell signaling. Fat Stress Liver Resistance Sci (New York NY) (2008) 322(5907):1483–4. doi: 10.1126/science.1167571
    1. Gormaz JG, Rodrigo R, Videla LA, Beems M. Biosynthesis and bioavailability of long-chain polyunsaturated fatty acids in non-alcoholic fatty liver disease. Prog Lipid Res (2010) 49(4):407–19. doi: 10.1016/j.plipres.2010.05.003
    1. Bedogni G, Gastaldelli A, Manco M, De Col A, Agosti F, Tiribelli C, et al. . Relationship between fatty liver and glucose metabolism: a cross-sectional study in 571 obese children. Nutrition metabolism Cardiovasc Dis NMCD (2012) 22(2):120–6. doi: 10.1016/j.numecd.2010.05.003
    1. Hotamisligil GS, Shargill NS, Spiegelman BM. Adipose expression of tumor necrosis factor-alpha: direct role in obesity-linked insulin resistance. Sci (New York NY) (1993) 259(5091):87–91. doi: 10.1126/science.7678183
    1. Wong CA, Araneta MR, Barrett-Connor E, Alcaraz J, Castaneda D, Macera C. Probable NAFLD, by ALT levels, and diabetes among Filipino-American women. Diabetes Res Clin practice (2008) 79(1):133–40. doi: 10.1016/j.diabres.2007.07.012
    1. Tamura Y, Watada H, Sato F, Kumashiro N, Sakurai Y, Hirose T, et al. . Effects of metformin on peripheral insulin sensitivity and intracellular lipid contents in muscle and liver of overweight Japanese subjects. Diabetes Obes Metab (2008) 10(9):733–8. doi: 10.1111/j.1463-1326.2007.00801.x
    1. Musso G, Gambino R, Cassader M, Pagano G. A meta-analysis of randomized trials for the treatment of nonalcoholic fatty liver disease. Hepatol (Baltimore Md) (2010) 52(1):79–104. doi: 10.1002/hep.23623
    1. Aoki K, Kamiyama H, Yoshimura K, Shibuya M, Masuda K, Terauchi Y. Miglitol administered before breakfast increased plasma active glucagon-like peptide-1 (GLP-1) levels after lunch in patients with type 2 diabetes treated with sitagliptin. Acta Diabetologica (2012) 49(3):225–30. doi: 10.1007/s00592-011-0322-9
    1. Agerso H, Jensen LB, Elbrond B, Rolan P, Zdravkovic M. The pharmacokinetics, pharmacodynamics, safety and tolerability of NN2211, a new long-acting GLP-1 derivative, in healthy men. Diabetologia (2002) 45(2):195–202. doi: 10.1007/s00125-001-0719-z
    1. Stephenne X, Foretz M, Taleux N, van der Zon GC, Sokal E, Hue L, et al. . Metformin activates AMP-activated protein kinase in primary human hepatocytes by decreasing cellular energy status. Diabetologia (2011) 54(12):3101–10. doi: 10.1007/s00125-011-2311-5
    1. Ben-Shlomo S, Zvibel I, Shnell M, Shlomai A, Chepurko E, Halpern Z, et al. . Glucagon-like peptide-1 reduces hepatic lipogenesis via activation of AMP-activated protein kinase. J hepatol (2011) 54(6):1214–23. doi: 10.1016/j.jhep.2010.09.032
    1. Nakagawa A, Satake H, Nakabayashi H, Nishizawa M, Furuya K, Nakano S, et al. . Receptor gene expression of glucagon-like peptide-1, but not glucose-dependent insulinotropic polypeptide, in rat nodose ganglion cells. Autonomic Neurosci Basic Clinical (2004) 110(1):36–43. doi: 10.1016/j.autneu.2003.11.001
    1. Larsen PJ, Fledelius C, Knudsen LB, Tang-Christensen M. Systemic administration of the long-acting GLP-1 derivative NN2211 induces lasting and reversible weight loss in both normal and obese rats. Diabetes (2001) 50(11):2530–9. doi: 10.2337/diabetes.50.11.2530
    1. Conarello SL, Li Z, Ronan J, Roy RS, Zhu L, Jiang G, et al. . Mice lacking dipeptidyl peptidase IV are protected against obesity and insulin resistance. Proc Natl Acad Sci USA (2003) 100(11):6825–30. doi: 10.1073/pnas.0631828100

Source: PubMed

3
Prenumerera