Does vitamin-D intake during resistance training improve the skeletal muscle hypertrophic and strength response in young and elderly men? - a randomized controlled trial

Jakob Agergaard, Jeanette Trøstrup, Jacob Uth, Jonas Vestergard Iversen, Anders Boesen, Jesper L Andersen, Peter Schjerling, Henning Langberg, Jakob Agergaard, Jeanette Trøstrup, Jacob Uth, Jonas Vestergard Iversen, Anders Boesen, Jesper L Andersen, Peter Schjerling, Henning Langberg

Abstract

Introduction: Recent studies have shown that vitamin-D intake can improve skeletal muscle function and strength in frail vitamin-D insufficient individuals. We investigated whether vitamin-D intake can improve the muscular response to resistance training in healthy young and elderly individuals, respectively.

Methods: Healthy untrained young (n = 20, age 20-30) and elderly (n = 20, age 60-75) men were randomized to 16 weeks of daily supplementary intake of either 48 μg of vitamin-D + 800 mg calcium (Vitamin-D-group) or 800 mg calcium (Placebo-group) during a period and at a latitude of low sunlight (December-April, 56°N). During the last 12 weeks of the supplementation the subjects underwent progressive resistance training of the quadriceps muscle. Muscle hypertrophy, measured as changes in cross sectional area (CSA), and isometric strength of the quadriceps were determined. Muscle biopsies were analyzed for fiber type morphology changes and mRNA expression of vitamin-D receptor (VDR), cytochrome p450 27B1 (CYP27B1) and Myostatin.

Results: In the vitamin-D groups, serum 25(OH)D concentration increased significantly and at week 12 was significantly different from placebo in both young men (71.6 vs. 50.4 nmol/L, respectively) and elderly men (111.2 vs. 66.7 nmol/L, respectively). After 12 weeks of resistance training, quadriceps CSA and isometric strength increased compared to baseline in young (CSA p < 0.0001, strength p = 0.005) and elderly (CSA p = 0.001, strength p < 0.0001) with no difference between vitamin-D and placebo groups. Vitamin-D intake and resistance training increased strength/CSA in elderly compared to young (p = 0.008). In the young vitamin-D group, the change in fiber type IIa percentage was greater after 12 weeks training (p = 0.030) and Myostatin mRNA expression lower compared to the placebo group (p = 0.006). Neither resistance training nor vitamin-D intake changed VDR mRNA expression.

Conclusion: No additive effect of vitamin-D intake during 12 weeks of resistance training could be detected on either whole muscle hypertrophy or muscle strength, but improved muscle quality in elderly and fiber type morphology in young were observed, indicating an effect of vitamin-D on skeletal muscle remodeling.

Trial registration: ClinicalTrials with nr. NCT01252381.

Keywords: Fiber type; Resistance exercise; Skeletal muscle; Vitamin-D; Vitamin-D receptor.

Figures

Fig. 1
Fig. 1
GAPDH mRNA expression normalized to RPLP0. Shown as fold changes post 12 weeks training compared to pre training on logarithmic scale at 4 h (TR+4h) and 48 h (TR+48h) after the last exercise session. Results are shown as geometric mean ± back-transformed SEM. * different from pre training (p < 0.05)
Fig. 2
Fig. 2
Flowchart showing a young and b elderly subjects from first contact to end of study
Fig. 3
Fig. 3
Serum 25(OH)D concentrations. Mean serum 25(OH)D concentrations ± SEM for young and elderly vitamin-D and placebo groups. Week 0 denote start of training period. # different from placebo (p < 0.05). $ different from week −4 (p < 0.05). () denote tendency (0.05 < p < 0.10)
Fig. 4
Fig. 4
CSA, Isometric strength and strength/CSA of Quadriceps muscle. Change in a CSA, b isometric strength and c strength/CSA of quadriceps muscle for young and elderly vitamin-D and placebo groups, respectively. Data shown as mean percentage change from week 0 ± SEM. * different from week 0 (p < 0.05)
Fig. 5
Fig. 5
Fiber type percentage and mean area a and b Fiber type (I, IIa and IIx) percentage and c and d fiber type (I and II) mean area for young and elderly vitamin-D and placebo groups, respectively. Shown as mean fiber type percentage ± SEM at pre training (week 0) and post training (week 12). * different from pre training (p < 0.05). $ different from Placebo group (p < 0.05)
Fig. 6
Fig. 6
VDR, CYP27B1 and Myostatin mRNA expression. mRNA expression for a VDR, b CYP27B1 and c Myostatin shown as fold changes post 12 weeks training compared to pre training on logarithmic scale at 4 h (TR+4h) and 48 h (TR+48h) after the last exercise session. Results are shown as geometric mean ± back-transformed SEM. * different from pre training (p < 0.05). $ different from placebo (p < 0.05)

References

    1. Lauretani F, Maggio M, Valenti G, Dall’Aglio E, Ceda GP. Vitamin D in older population: new roles for this “classic actor”? Aging Male. 2010;13:215–32. doi: 10.3109/13685538.2010.487551.
    1. Hamilton B. Vitamin D and human skeletal muscle. Scand J Med Sci Sports. 2010;20:182–90.
    1. Barnard K, Colón-Emeric C. Extraskeletal effects of vitamin D in older adults: cardiovascular disease, mortality, mood, and cognition. Am J Geriatr Pharmacother. 2010;8:4–33. doi: 10.1016/j.amjopharm.2010.02.004.
    1. Bischoff-Ferrari HA. Vitamin D and fracture prevention. Endocrinol Metab Clin North Am. 2010;39:347–53. doi: 10.1016/j.ecl.2010.02.009.
    1. Mohr SB, Garland CF, Gorham ED, Garland FC. The association between ultraviolet B irradiance, vitamin D status and incidence rates of type 1 diabetes in 51 regions worldwide. Diabetologia. 2008;51:1391–8. doi: 10.1007/s00125-008-1061-5.
    1. Grandi NC, Breitling LP, Brenner H. Vitamin D and cardiovascular disease: systematic review and meta-analysis of prospective studies. Prev Med (Baltim) 2010;51:228–33. doi: 10.1016/j.ypmed.2010.06.013.
    1. Yin L, Grandi N, Raum E, Haug U, Arndt V, Brenner H. Meta-analysis: serum vitamin D and breast cancer risk. Eur J Cancer. 2010;46:2196–205. doi: 10.1016/j.ejca.2010.03.037.
    1. Leventis P, Patel S. Clinical aspects of vitamin D in the management of rheumatoid arthritis. Rheumatology (Oxford) 2008;47:1617–21. doi: 10.1093/rheumatology/ken296.
    1. Dörr J, Döring A, Paul F. Can we prevent or treat multiple sclerosis by individualised vitamin D supply? EPMA J. 2013;4:4. doi: 10.1186/1878-5085-4-4.
    1. Von Essen MR, Kongsbak M, Schjerling P, Olgaard K, Odum N, Geisler C. Vitamin D controls T cell antigen receptor signaling and activation of human T cells. Nat Immunol. 2010;11:344–9. doi: 10.1038/ni.1851.
    1. Marcell TJ, Hawkins SA, Wiswell RA. Leg strength declines with advancing age despite habitual endurance exercise in active older adults. J Strength Cond Res. 2014;28:504–13. doi: 10.1519/JSC.0b013e3182a952cc.
    1. Latham NK, Anderson CS, Reid IR. Effects of vitamin D supplementation on strength, physical performance, and falls in older persons: a systematic review. J Am Geriatr Soc. 2003;51:1219–26. doi: 10.1046/j.1532-5415.2003.51405.x.
    1. Ceglia L. Vitamin D and skeletal muscle tissue and function. Mol Aspects Med. 2008;29:407–14. doi: 10.1016/j.mam.2008.07.002.
    1. Ceglia L. Vitamin D and its role in skeletal muscle. Curr Opin Clin Nutr Metab Care. 2009;12:628–33. doi: 10.1097/MCO.0b013e328331c707.
    1. Wang Y, Zhu J, DeLuca HF. Where is the vitamin D receptor? Arch Biochem Biophys. 2012;523:123–33. doi: 10.1016/j.abb.2012.04.001.
    1. Srikuea R, Zhang X, Park-Sarge O-K, Esser KA. VDR and CYP27B1 are expressed in C2C12 cells and regenerating skeletal muscle: potential role in suppression of myoblast proliferation. Am J Physiol Cell Physiol. 2012;303:C396–405. doi: 10.1152/ajpcell.00014.2012.
    1. Garcia LA, King KK, Ferrini MG, Norris KC, Artaza JN. 1,25 (OH) 2vitamin D3 stimulates myogenic differentiation by inhibiting cell proliferation and modulating the expression of promyogenic growth factors and myostatin in C2C12 skeletal muscle cells. Endocrinology. 2011;152:2976–86. doi: 10.1210/en.2011-0159.
    1. Girgis CM, Mokbel N, Cha KM, Houweling PJ, Abboud M, Fraser DR, et al. The vitamin D receptor (VDR) is expressed in skeletal muscle of male mice and modulates 25-hydroxyvitamin D (25OHD) uptake in myofibers. Endocrinology. 2014;155:3227–37. doi: 10.1210/en.2014-1016.
    1. Bischoff HA, Borchers M, Gudat F, Duermueller U, Theiler R, Stähelin HB, et al. In situ detection of 1,25-dihydroxyvitamin D3 receptor in human skeletal muscle tissue. Histochem J. 2001;33:19–24. doi: 10.1023/A:1017535728844.
    1. Ceglia L, da Silva MM, Park LK, Morris E, Harris SS, Bischoff-Ferrari HA, et al. Multi-step immunofluorescent analysis of vitamin D receptor loci and myosin heavy chain isoforms in human skeletal muscle. J Mol Histol. 2010;41:137–42. doi: 10.1007/s10735-010-9270-x.
    1. Bischoff Ferrari HA. Validated treatments and therapeutic perspectives regarding nutritherapy. J Nutr Health Aging. 2009;13:737–41. doi: 10.1007/s12603-009-0207-6.
    1. Salles J, Chanet A, Giraudet C, Patrac V, Pierre P, Jourdan M, et al. 1,25 (OH) 2-vitamin D3 enhances the stimulating effect of leucine and insulin on protein synthesis rate through Akt/PKB and mTOR mediated pathways in murine C2C12 skeletal myotubes. Mol Nutr Food Res. 2013;57:2137–46. doi: 10.1002/mnfr.201300074.
    1. Girgis CM, Clifton-Bligh RJ, Mokbel N, Cheng K, Gunton JE. Vitamin D signaling regulates proliferation, differentiation, and myotube size in C2C12 skeletal muscle cells. Endocrinology. 2014;155:347–57. doi: 10.1210/en.2013-1205.
    1. Bischoff HA, Stähelin HB, Dick W, Akos R, Knecht M, Salis C, et al. Effects of vitamin D and calcium supplementation on falls: a randomized controlled trial. J Bone Miner Res. 2003;18:343–51. doi: 10.1359/jbmr.2003.18.2.343.
    1. Brunner RL, Cochrane B, Jackson RD, Larson J, Lewis C, Limacher M, et al. Calcium, vitamin D supplementation, and physical function in the Women’s Health Initiative. J Am Diet Assoc. 2008;108:1472–9. doi: 10.1016/j.jada.2008.06.432.
    1. Bunout D, Barrera G, Leiva L, Gattas V, de la Maza MP, Avendaño M, et al. Effects of vitamin D supplementation and exercise training on physical performance in Chilean vitamin D deficient elderly subjects. Exp Gerontol. 2006;41:746–52. doi: 10.1016/j.exger.2006.05.001.
    1. Gupta R, Sharma U, Gupta N, Kalaivani M, Singh U, Guleria R, et al. Effect of cholecalciferol and calcium supplementation on muscle strength and energy metabolism in vitamin D-deficient Asian Indians: a randomized, controlled trial. Clin Endocrinol (Oxf) 2010;73:445–51.
    1. Moreira-Pfrimer LDF, Pedrosa MAC, Teixeira L, Lazaretti-Castro M. Treatment of vitamin D deficiency increases lower limb muscle strength in institutionalized older people independently of regular physical activity: a randomized double-blind controlled trial. Ann Nutr Metab. 2009;54:291–300. doi: 10.1159/000235874.
    1. Pfeifer M, Begerow B, Minne HW, Suppan K, Fahrleitner-Pammer A, Dobnig H. Effects of a long-term vitamin D and calcium supplementation on falls and parameters of muscle function in community-dwelling older individuals. Osteoporos Int. 2009;20:315–22. doi: 10.1007/s00198-008-0662-7.
    1. Ceglia L, Niramitmahapanya S, da Silva MM, Rivas DA, Harris SS, Bischoff-Ferrari H, et al. A randomized study on the effect of vitamin D supplementation on skeletal muscle morphology and vitamin D receptor concentration in older women. J Clin Endocrinol Metab. 2013;98:E1927–35. doi: 10.1210/jc.2013-2820.
    1. Sato Y, Iwamoto J, Kanoko T, Satoh K. Low-dose vitamin D prevents muscular atrophy and reduces falls and hip fractures in women after stroke: a randomized controlled trial. Cerebrovasc Dis. 2005;20:187–92. doi: 10.1159/000087203.
    1. Sørensen OH, Lund B, Saltin B, Andersen RB, Hjorth L, Melsen F, et al. Myopathy in bone loss of ageing: improvement by treatment with 1 alpha-hydroxycholecalciferol and calcium. Clin Sci (Lond) 1979;56:157–61. doi: 10.1042/cs0560157.
    1. Beaudart C, Buckinx F, Rabenda V, Gillain S, Cavalier E, Slomian J, et al. The effects of vitamin D on skeletal muscle strength, muscle mass, and muscle power: a systematic review and meta-analysis of randomized controlled trials. J Clin Endocrinol Metab. 2014;99:4336–45. doi: 10.1210/jc.2014-1742.
    1. Owens DJ, Webber D, Impey SG, Tang J, Donovan TF, Fraser WD, et al. Vitamin D supplementation does not improve human skeletal muscle contractile properties in insufficient young males. Eur J Appl Physiol. 2014;114:1309–20. doi: 10.1007/s00421-014-2865-2.
    1. Pfeifer M, Begerow B, Minne HW. Vitamin D and muscle function. Osteoporos Int. 2002;13:187–94. doi: 10.1007/s001980200012.
    1. Hyppönen E, Power C. Hypovitaminosis D in British adults at age 45 y: nationwide cohort study of dietary and lifestyle predictors. Am J Clin Nutr. 2007;85:860–8.
    1. Baechle TR, Earle RW. (U.S.) NS& CA: Essentials of Strength Training & Conditioning. 3rd edition. Champaign, IL: Human Kinetics; 2008.
    1. Andersen JL, Aagaard P. Myosin heavy chain IIX overshoot in human skeletal muscle. Muscle Nerve. 2000;23:1095–104. doi: 10.1002/1097-4598(200007)23:7<1095::AID-MUS13>;2-O.
    1. Brooke MH, Kaiser KK. Muscle fiber types: how many and what kind? Arch Neurol. 1970;23:369–79. doi: 10.1001/archneur.1970.00480280083010.
    1. Holm L, Reitelseder S, Pedersen TG, Doessing S, Petersen SG, Flyvbjerg A, et al. Changes in muscle size and MHC composition in response to resistance exercise with heavy and light loading intensity. J Appl Physiol. 2008;105:1454–61. doi: 10.1152/japplphysiol.90538.2008.
    1. Verschueren SMP, Bogaerts A, Delecluse C, Claessens AL, Haentjens P, Vanderschueren D, et al. The effects of whole-body vibration training and vitamin D supplementation on muscle strength, muscle mass, and bone density in institutionalized elderly women: a 6-month randomized, controlled trial. J Bone Miner Res. 2011;26:42–9. doi: 10.1002/jbmr.181.
    1. Kukuljan S, Nowson CA, Sanders K, Daly RM. Effects of resistance exercise and fortified milk on skeletal muscle mass, muscle size, and functional performance in middle-aged and older men: an 18-mo randomized controlled trial. J Appl Physiol. 2009;107:1864–73. doi: 10.1152/japplphysiol.00392.2009.
    1. Dhesi JK, Jackson SHD, Bearne LM, Moniz C, Hurley MV, Swift CG, et al. Vitamin D supplementation improves neuromuscular function in older people who fall. Age Ageing. 2004;33:589–95. doi: 10.1093/ageing/afh209.
    1. El-Hajj Fuleihan G, Nabulsi M, Tamim H, Maalouf J, Salamoun M, Khalife H, et al. Effect of vitamin D replacement on musculoskeletal parameters in school children: a randomized controlled trial. J Clin Endocrinol Metab. 2006;91:405–12. doi: 10.1210/jc.2005-1436.
    1. Latham NK, Anderson CS, Lee A, Bennett DA, Moseley A, Cameron ID. A randomized, controlled trial of quadriceps resistance exercise and vitamin D in frail older people: the Frailty Interventions Trial in Elderly Subjects (FITNESS) J Am Geriatr Soc. 2003;51:291–9. doi: 10.1046/j.1532-5415.2003.51101.x.
    1. Hossein-nezhad A, Holick MF. Optimize dietary intake of vitamin D: an epigenetic perspective. Curr Opin Clin Nutr Metab Care. 2012;15:567–79. doi: 10.1097/MCO.0b013e3283594978.
    1. Heaney RP. The Vitamin D requirement in health and disease. J Steroid Biochem Mol Biol. 2005;97:13–9. doi: 10.1016/j.jsbmb.2005.06.020.
    1. Bischoff-Ferrari HA, Giovannucci E, Willett WC, Dietrich T, Dawson-Hughes B. Estimation of optimal serum concentrations of 25-hydroxyvitamin D for multiple health outcomes. Am J Clin Nutr. 2006;84:18–28.
    1. Aagaard P, Andersen JL, Dyhre-Poulsen P, Leffers AM, Wagner A, Magnusson SP, et al. A mechanism for increased contractile strength of human pennate muscle in response to strength training: changes in muscle architecture. J Physiol. 2001;534(Pt. 2):613–23. doi: 10.1111/j.1469-7793.2001.t01-1-00613.x.
    1. Reeves ND, Narici MV, Maganaris CN. Effect of resistance training on skeletal muscle-specific force in elderly humans. J Appl Physiol. 2004;96:885–92. doi: 10.1152/japplphysiol.00688.2003.
    1. Häkkinen K, Newton RU, Gordon SE, McCormick M, Volek JS, Nindl BC, et al. Changes in muscle morphology, electromyographic activity, and force production characteristics during progressive strength training in young and older men. J Gerontol A Biol Sci Med Sci. 1998;53:B415–23. doi: 10.1093/gerona/53A.6.B415.
    1. Welle S, Totterman S, Thornton C. Effect of age on muscle hypertrophy induced by resistance training. J Gerontol A Biol Sci Med Sci. 1996;51:M270–5. doi: 10.1093/gerona/51A.6.M270.
    1. Higbie EJ, Cureton KJ, Warren GL, Prior BM. Effects of concentric and eccentric training on muscle strength, cross-sectional area, and neural activation. J Appl Physiol. 1996;81:2173–81.
    1. Ferri A, Scaglioni G, Pousson M, Capodaglio P, Van Hoecke J, Narici MV. Strength and power changes of the human plantar flexors and knee extensors in response to resistance training in old age. Acta Physiol Scand. 2003;177:69–78. doi: 10.1046/j.1365-201X.2003.01050.x.
    1. Andersen LL, Tufekovic G, Zebis MK, Crameri RM, Verlaan G, Kjaer M, et al. The effect of resistance training combined with timed ingestion of protein on muscle fiber size and muscle strength. Metabolism. 2005;54:151–6. doi: 10.1016/j.metabol.2004.07.012.
    1. Kraemer WJ, Patton JF, Gordon SE, Harman EA, Deschenes MR, Reynolds K, et al. Compatibility of high-intensity strength and endurance training on hormonal and skeletal muscle adaptations. J Appl Physiol. 1995;78:976–89.
    1. Esmarck B, Andersen JL, Olsen S, Richter EA, Mizuno M, Kjaer M. Timing of postexercise protein intake is important for muscle hypertrophy with resistance training in elderly humans. J Physiol. 2001;535(Pt 1):301–11. doi: 10.1111/j.1469-7793.2001.00301.x.

Source: PubMed

3
Prenumerera