Pulmonary Arterial Pressure Response During Exercise in COPD: A Correlation with C-Reactive Protein (hsCRP)

Janos Varga, Attila Palinkas, Imre Lajko, Ildikó Horváth, Krisztina Boda, Attila Somfay, Janos Varga, Attila Palinkas, Imre Lajko, Ildikó Horváth, Krisztina Boda, Attila Somfay

Abstract

Background: The non-invasive assessment of pulmonary haemodynamics during exercise provides complementary data for the evaluation of exercise tolerance in patients with COPD.

Methods: Exercise echocardiography in the semi-supine position was performed in 27 patients with COPD (C) with a forced expiratory volume in one second (FEV1) of 36±12% predicted and 13 age and gender-matched non-COPD subjects (NC). COPD patients also underwent cardiopulmonary exercise testing with gas exchange detection (CPET). Furthermore, serum high sensitive C-reactive protein (hsCRP), a marker of systemic inflammation, was also measured.

Results: The maximal work rate (WRmax) and aerobic capacity (VO2peak) were significantly reduced (WRmax: 77±33 Watt, VO2peak: 50±14 %pred) in COPD. Pulmonary arterial systolic pressure (PAPs) was higher in COPD versus controls both at rest (39±5 vs. 31±2 mmHg, p<0.001), and at peak exercise (72±12 vs. 52±8 mmHg, p<0.001). In 19 (70%) COPD patients, the increase in PAPs was above 22 mmHg. The change in pressure (dPAPs) correlated with hsCRP (r2=0.53, p<0.0001) and forced vital capacity (FVC) (r2=0.18, p<0.001).

Conclusion: PAPs at rest and during exercise were significantly higher in COPD patients and correlated with higher hsCRP. This may indicate a role for systemic inflammation and hyperinflation in the pulmonary vasculature in COPD. The study was registered at ClinicalTrials.gov webpage with NCT00949195 registration number.

Keywords: Chronic obstructive pulmonary disease; Exercise; HS-CRP; Pulmonary hypertension; Systemic inflammation.

Figures

Fig. (1)
Fig. (1)
Flow of participants through each study stage.
Fig. (2)
Fig. (2)
The increase of peak pulmonary arterial systolic pressure during exercise during semi-supine exercise echocardiography. PAPs: pulmonary artery systolic pressure; *:pvs. rest, #:p<0.05 COPD patients vs. non-COPD subjects, @:p<0.05 peak-rest value difference between groups, error bars represents ±SE.
Fig. (3)
Fig. (3)
Correlation between increment of peak pulmonary artery systolic pressure during exercise and systemic inflammatory marker in patients with COPD. dPAPs: change in PAPs during exercise, hsCRP: high sensitive C-reactive protein, r2: linear regression correlation coefficient.
Fig. (4)
Fig. (4)
Correlation between increment of peak pulmonary artery systolic pressure during exercise and forced vital capacity in patients with COPD. dPAPs: change in PAPs during exercise, FVC: forced vital capacity, r2: linear regression correlation coefficient.

References

    1. Barnes P.J., Celli B.R. Systemic manifestations and comorbidities of COPD. Eur. Respir. J. 2009;33(5):1165–1185. doi: 10.1183/09031936.00128008.
    1. Decramer M., Rennard S., Troosters T., Mapel D.W., Giardino N., Mannino D., Wouters E., Sethi S., Cooper C.B. COPD as a lung disease with systemic consequences clinical impact, mechanisms, and potential for early intervention. COPD. 2008;5(4):235–256. doi: 10.1080/15412550802237531.
    1. Eickhoff P., Valipour A., Kiss D., Schreder M., Cekici L., Geyer K., Kohansal R., Burghuber O.C. Determinants of systemic vascular function in patients with stable chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 2008;178(12):1211–1218. doi: 10.1164/rccm.200709-1412OC.
    1. Brekke P.H., Omland T., Holmedal S.H., Smith P., Søyseth V. Troponin T elevation and long-term mortality after chronic obstructive pulmonary disease exacerbation. Eur. Respir. J. 2008;31(3):563–570. doi: 10.1183/09031936.00015807.
    1. Man S.F., Xing L., Connett J.E., Anthonisen N.R., Wise R.A., Tashkin D.P., Zhang X., Vessey R., Walker T.G., Celli B.R., Sin D.D. Circulating fibronectin to C-reactive protein ratio and mortality: a biomarker in COPD? Eur. Respir. J. 2008;32(6):1451–1457. doi: 10.1183/09031936.00153207.
    1. Falk J.A., Kadiev S., Criner G.J., Scharf S.M., Minai O.A., Diaz P. Cardiac disease in chronic obstructive pulmonary disease. Proc. Am. Thorac. Soc. 2008;5(4):543–548. doi: 10.1513/pats.200708-142ET.
    1. Chaouat A., Naeije R., Weitzenblum E. Pulmonary hypertension in COPD. Eur. Respir. J. 2008;32(5):1371–1385. doi: 10.1183/09031936.00015608.
    1. Joppa P., Petrasova D., Stancak B., Tkacova R. Systemic inflammation in patients with COPD and pulmonary hypertension. Chest. 2006;130(2):326–333. doi: 10.1378/chest.130.2.326.
    1. Price L.C., Wort S.J., Perros F., Dorfmüller P., Huertas A., Montani D., Cohen-Kaminsky S., Humbert M. Inflammation in pulmonary arterial hypertension. Chest. 2012;141(1):210–221. doi: 10.1378/chest.11-0793.
    1. Chaouat A., Savale L., Chouaid C., Tu L., Sztrymf B., Canuet M., Maitre B., Housset B., Brandt C., Le Corvoisier P., Weitzenblum E., Eddahibi S., Adnot S. Role for interleukin-6 in COPD-related pulmonary hypertension. Chest. 2009;136(3):678–687. doi: 10.1378/chest.08-2420.
    1. Kwon Y.S., Chi S.Y., Shin H.J., Kim E.Y., Yoon B.K., Ban H.J., Oh I.J., Kim K.S., Kim Y.C., Lim S.C. Plasma C-reactive protein and endothelin-1 level in patients with chronic obstructive pulmonary disease and pulmonary hypertension. J. Korean Med. Sci. 2010;25(10):1487–1491. doi: 10.3346/jkms.2010.25.10.1487.
    1. Andersen C.U., Mellemkjær S., Nielsen-Kudsk J.E., Bendstrup E., Hilberg O., Simonsen U. Pulmonary hypertension in chronic obstructive and interstitial lung diseases. Int. J. Cardiol. 2013;168(3):1795–1804. doi: 10.1016/j.ijcard.2013.06.033.
    1. Burger C.D. Pulmonary hypertension in COPD: a review and consideration of the role of arterial vasodilators. COPD. 2009;6(2):137–144. doi: 10.1080/15412550902754252.
    1. Chaouat A., Naeije R., Weitzenblum E. Pulmonary hypertension in COPD. Eur. Respir. J. 2008;32(5):1371–1385. doi: 10.1183/09031936.00015608.
    1. Solidoro P., Boffini M., Lacedonia D., Scichilone N., Paciocco G., Di Marco F. Pulmonary hypertension in COPD and lung transplantation: timing and procedures. Minerva Med. 2014
    1. Cuttica M.J., Kalhan R., Shlobin O.A., Ahmad S., Gladwin M., Machado R.F., Barnett S.D., Nathan S.D. Categorization and impact of pulmonary hypertension in patients with advanced COPD. Respir. Med. 2010;104(12):1877–1882. doi: 10.1016/j.rmed.2010.05.009.
    1. Hanaoka M., Ideura G., Ito M., Urushihata K., Koizumi T., Fujimoto K., Kubo K. Pulmonary haemodynamic changes in patients with severe COPD. Respirology. 2008;13(6):919–922. doi: 10.1111/j.1440-1843.2008.01318.x.
    1. Naeije R., Boerrigter B.G. Pulmonary hypertension at exercise in COPD: does it matter? Eur. Respir. J. 2013;41(5):1002–1004. doi: 10.1183/09031936.00173512.
    1. Lewis G.D., Bossone E., Naeije R., Grünig E., Saggar R., Lancellotti P., Ghio S., Varga J., Rajagopalan S., Oudiz R., Rubenfire M. Pulmonary vascular hemodynamic response to exercise in cardiopulmonary diseases. Circulation. 2013;128(13):1470–1479. doi: 10.1161/CIRCULATIONAHA.112.000667.
    1. Pellegrino R., Viegi G., Brusasco V., Crapo R.O., Burgos F., Casaburi R., Coates A., van der Grinten C.P., Gustafsson P., Hankinson J., Jensen R., Johnson D.C., MacIntyre N., McKay R., Miller M.R., Navajas D., Pedersen O.F., Wanger J. Interpretative strategies for lung function tests. Eur. Respir. J. 2005;26(5):948–968. doi: 10.1183/09031936.05.00035205.
    1. Cotes J.E., Chinn D.J., Quanjer P.H., Roca J., Yernault J.C. Standardization of the measurement of transfer factor (diffusing capacity). Eur. Respir. J. 1993;6(Suppl. 16):41–52. doi: 10.1183/09041950.041s1693.
    1. Sue D.Y., Wasserman K., Moricca R.B., Casaburi R. Metabolic acidosis during exercise in patients with chronic obstructive pulmonary disease. Use of the V-slope method for anaerobic threshold determination. Chest. 1988;94(5):931–938. doi: 10.1378/chest.94.5.931.
    1. Campbell S.C. A comparison of the maximum voluntary ventilation with the forced expiratory volume in one second: an assessment of subject cooperation. J. Occup. Med. 1982;24(7):531–533.
    1. Borg G.A. Psychophysical bases of perceived exertion. Med. Sci. Sports Exerc. 1982;14(5):377–381. doi: 10.1249/00005768-198205000-00012.
    1. Sahn D.J., DeMaria A., Kisslo J., Weyman A. Recommendations regarding quantitation in M-mode echocardiography: results of a survey of echocardiographic measurements. Circulation. 1978;58(6):1072–1083. doi: 10.1161/01.CIR.58.6.1072.
    1. Hatle L., Angelsen B. Doppler ultrasound in cardiology: Physical principles and clinical applications. 2nd ed. Philadelphia: Lea and Febiger; 1985. p. 23.
    1. Yock P.G., Popp R.L. Noninvasive estimation of right ventricular systolic pressure by Doppler ultrasound in patients with tricuspid regurgitation. Circulation. 1984;70(4):657–662. doi: 10.1161/01.CIR.70.4.657.
    1. Simonson J.S., Schiller N.B. Sonospirometry: a new method for noninvasive estimation of mean right atrial pressure based on two-dimensional echographic measurements of the inferior vena cava during measured inspiration. J. Am. Coll. Cardiol. 1988;11(3):557–564. doi: 10.1016/0735-1097(88)91531-8.
    1. Currie P.J., Seward J.B., Chan K.L., Fyfe D.A., Hagler D.J., Mair D.D., Reeder G.S., Nishimura R.A., Tajik A.J. Continuous wave Doppler determination of right ventricular pressure: a simultaneous Doppler-catheterization study in 127 patients. J. Am. Coll. Cardiol. 1985;6(4):750–756. doi: 10.1016/S0735-1097(85)80477-0.
    1. Kimberly M.M., Vesper H.W., Caudill S.P., Cooper G.R., Rifai N., Dati F., Myers G.L. Standardization of immunoassays for measurement of high-sensitivity C-reactive protein. Phase I: evaluation of secondary reference materials. Clin. Chem. 2003;49(4):611–616. doi: 10.1373/49.4.611.
    1. Pyxaras S.A., Pinamonti B., Barbati G., Santangelo S., Valentincic M., Cettolo F., Secoli G., Magnani S., Merlo M., Lo Giudice F., Perkan A., Sinagra G. Echocardiographic evaluation of systolic and mean pulmonary artery pressure in the follow-up of patients with pulmonary hypertension. Eur. J. Echocardiogr. 2011;12(9):696–701. doi: 10.1093/ejechocard/jer127.
    1. Kovacs G., Berghold A., Scheidl S., Olschewski H. Pulmonary arterial pressure during rest and exercise in healthy subjects: a systematic review. Eur. Respir. J. 2009;34(4):888–894. doi: 10.1183/09031936.00145608.
    1. Hopkins N., McLoughlin P. The structural basis of pulmonary hypertension in chronic lung disease: remodelling, rarefaction or angiogenesis? J. Anat. 2002;201(4):335–348. doi: 10.1046/j.1469-7580.2002.00096.x.
    1. Cao J.J., Arnold A.M., Manolio T.A., Polak J.F., Psaty B.M., Hirsch C.H., Kuller L.H., Cushman M. Association of carotid artery intima-media thickness, plaques, and C-reactive protein with future cardiovascular disease and all-cause mortality: the Cardiovascular Health Study. Circulation. 2007;116(1):32–38. doi: 10.1161/CIRCULATIONAHA.106.645606.
    1. Zacho J., Tybjaerg-Hansen A., Jensen J.S., Grande P., Sillesen H., Nordestgaard B.G. Genetically elevated C-reactive protein and ischemic vascular disease. N. Engl. J. Med. 2008;359(18):1897–1908. doi: 10.1056/NEJMoa0707402.
    1. Robbins I.M., Newman J.H., Johnson R.F., Hemnes A.R., Fremont R.D., Piana R.N., Zhao D.X., Byrne D.W. Association of the metabolic syndrome with pulmonary venous hypertension. Chest. 2009;136(1):31–36. doi: 10.1378/chest.08-2008.
    1. Lam C.S., Borlaug B.A., Kane G.C., Enders F.T., Rodeheffer R.J., Redfield M.M. Age-associated increases in pulmonary artery systolic pressure in the general population. Circulation. 2009;119(20):2663–2670. doi: 10.1161/CIRCULATIONAHA.108.838698.
    1. Skjørten I., Hilde J.M., Melsom M.N., Hansteen V., Steine K., Humerfelt S. Pulmonary artery pressure and PaO2 in chronic obstructive pulmonary disease. Respir. Med. 2013;107(8):1271–1279. doi: 10.1016/j.rmed.2013.03.021.
    1. Gläser S., Noga O., Koch B., Opitz C.F., Schmidt B., Temmesfeld B., Dörr M., Ewert R., Schäper C. Impact of pulmonary hypertension on gas exchange and exercise capacity in patients with pulmonary fibrosis. Respir. Med. 2009;103(2):317–324. doi: 10.1016/j.rmed.2008.08.005.
    1. Ammash N.M., McGoon M.D., Shub C., et al. Exercise-echocardiography derived pulmonary artery pressure slope in borderline and mild to moderate pulmonary arterial hypertension. Clin. Med. Cardiol. 2008;2:235–244.
    1. Lopes L.R., Loureiro M.J., Miranda R., Almeida S., Almeida A.R., Cordeiro A., Cotrim C., Carrageta M. The usefulness of contrast during exercise echocardiography for the assessment of systolic pulmonary pressure. Cardiovasc. Ultrasound. 2008;6(6):51. doi: 10.1186/1476-7120-6-51.
    1. Janda S., Shahidi N., Gin K., Swiston J. Diagnostic accuracy of echocardiography for pulmonary hypertension: a systematic review and meta-analysis. Heart. 2011;97(8):612–622. doi: 10.1136/hrt.2010.212084.
    1. Peinado V.I., Santos S., Ramírez J., Roca J., Rodriguez-Roisin R., Barberà J.A. Response to hypoxia of pulmonary arteries in chronic obstructive pulmonary disease: an in vitro study. Eur. Respir. J. 2002;20(2):332–338. doi: 10.1183/09031936.02.00282002.

Source: PubMed

3
Prenumerera