Protein S100 as outcome predictor after out-of-hospital cardiac arrest and targeted temperature management at 33 °C and 36 °C

Pascal Stammet, Josef Dankiewicz, Niklas Nielsen, François Fays, Olivier Collignon, Christian Hassager, Michael Wanscher, Johan Undèn, Jorn Wetterslev, Tommaso Pellis, Anders Aneman, Jan Hovdenes, Matt P Wise, Georges Gilson, David Erlinge, Janneke Horn, Tobias Cronberg, Michael Kuiper, Jesper Kjaergaard, Yvan Gasche, Yvan Devaux, Hans Friberg, Target Temperature Management after Out-of-Hospital Cardiac Arrest (TTM) trial investigators, Pascal Stammet, Josef Dankiewicz, Niklas Nielsen, François Fays, Olivier Collignon, Christian Hassager, Michael Wanscher, Johan Undèn, Jorn Wetterslev, Tommaso Pellis, Anders Aneman, Jan Hovdenes, Matt P Wise, Georges Gilson, David Erlinge, Janneke Horn, Tobias Cronberg, Michael Kuiper, Jesper Kjaergaard, Yvan Gasche, Yvan Devaux, Hans Friberg, Target Temperature Management after Out-of-Hospital Cardiac Arrest (TTM) trial investigators

Abstract

Background: We aimed to investigate the diagnostic performance of S100 as an outcome predictor after out-of-hospital cardiac arrest (OHCA) and the potential influence of two target temperatures (33 °C and 36 °C) on serum levels of S100.

Methods: This is a substudy of the Target Temperature Management after Out-of-Hospital Cardiac Arrest (TTM) trial. Serum levels of S100 were measured a posteriori in a core laboratory in samples collected at 24, 48, and 72 h after OHCA. Outcome at 6 months was assessed using the Cerebral Performance Categories Scale (CPC 1-2 = good outcome, CPC 3-5 = poor outcome).

Results: We included 687 patients from 29 sites in Europe. Median S100 values were higher in patients with a poor outcome at 24, 48, and 72 h: 0.19 (IQR 0.10-0.49) versus 0.08 (IQR 0.06-0.11) μg/ml, 0.16 (IQR 0.10-0.44) versus 0.07 (IQR 0.06-0.11) μg/L, and 0.13 (IQR 0.08-0.26) versus 0.06 (IQR 0.05-0.09) μg/L (p < 0.001), respectively. The ability to predict outcome was best at 24 h with an AUC of 0.80 (95% CI 0.77-0.83). S100 values were higher at 24 and 72 h in the 33 °C group than in the 36 °C group (0.12 [0.07-0.22] versus 0.10 [0.07-0.21] μg/L and 0.09 [0.06-0.17] versus 0.08 [0.05-0.10], respectively) (p < 0.02). In multivariable analyses including baseline variables and the allocated target temperature, the addition of S100 improved the AUC from 0.80 to 0.84 (95% CI 0.81-0.87) (p < 0.001), but S100 was not an independent outcome predictor. Adding S100 to the same model including neuron-specific enolase (NSE) did not further improve the AUC.

Conclusions: The allocated target temperature did not affect S100 to a clinically relevant degree. High S100 values are predictive of poor outcome but do not add value to present prognostication models with or without NSE. S100 measured at 24 h and afterward is of limited value in clinical outcome prediction after OHCA.

Trial registration: ClinicalTrials.gov identifier: NCT01020916 . Registered on 25 November 2009.

Keywords: Biomarker; Cerebral performance; Neuroprognostication; Prognosis; S100.

Figures

Fig. 1
Fig. 1
Study flowchart. Number of patients enrolled in the TTM trial and included in this substudy a; Number of samples included in this study and reasons for eliminating serum samples from analysis b. TTM Target Temperature Management after Out-of-Hospital Cardiac Arrest trial, CPC Cerebral Performance Categories Scale
Fig. 2
Fig. 2
S100 time course. Box plots of S100 over the first 72 h after return of spontaneous circulation. Data are presented as median, quartile 1, quartile 3, and lower fence (i.e., lowest value above [quartile 1–1.5 {quartile3 − quartile1}]) and upper fence (i.e., greater value below [quartile 3 + 1.5 {quartile3 − quartile1}]). A statistical difference was found only for S100 values of patients with good outcomes, with higher values in the 33 °C group and between good and poor outcome groups. * p < 0.05. CPC Cerebral Performance Categories Scale
Fig. 3
Fig. 3
ROC curves with AUCs for S100 at 24 h (a), 48 h (b), and 72 h (c) after return of spontaneous circulation for outcome prediction according to Cerebral Performance Categories Scale score at 6 months
Fig. 4
Fig. 4
Kaplan-Meier curves for prediction of survival at the end of the trial (primary endpoint of the Target Temperature Management after Out-of-Hospital Cardiac Arrest trial) for S100 values at 24 h (a), 48 h (b), and 72 h (c) after return of spontaneous circulation. Separation into quartiles of serum S100 levels

References

    1. Lemiale V, Dumas F, Mongardon N, Giovanetti O, Charpentier J, Chiche JD, et al. Intensive care unit mortality after cardiac arrest: the relative contribution of shock and brain injury in a large cohort. Intensive Care Med. 2013;39(11):1972–80. doi: 10.1007/s00134-013-3043-4.
    1. Dragancea I, Rundgren M, Englund E, Friberg H, Cronberg T. The influence of induced hypothermia and delayed prognostication on the mode of death after cardiac arrest. Resuscitation. 2013;84(3):337–42. doi: 10.1016/j.resuscitation.2012.09.015.
    1. Laver S, Farrow C, Turner D, Nolan J. Mode of death after admission to an intensive care unit following cardiac arrest. Intensive Care Med. 2004;30(11):2126–8. doi: 10.1007/s00134-004-2425-z.
    1. Donato R. Functional roles of S100 proteins, calcium-binding proteins of the EF-hand type. Biochim Biophys Acta. 1999;1450(3):191–231. doi: 10.1016/S0167-4889(99)00058-0.
    1. Zimmer DB, Cornwall EH, Landar A, Song W. The S100 protein family: history, function, and expression. Brain Res Bull. 1995;37(4):417–29. doi: 10.1016/0361-9230(95)00040-2.
    1. Schafer BW, Heizmann CW. The S100 family of EF-hand calcium-binding proteins: functions and pathology. Trends Biochem Sci. 1996;21(4):134–40. doi: 10.1016/S0968-0004(96)80167-8.
    1. Sandroni C, Cavallaro F, Callaway CW, Sanna T, D’Arrigo S, Kuiper M, et al. Predictors of poor neurological outcome in adult comatose survivors of cardiac arrest: a systematic review and meta-analysis. Part 1: Patients not treated with therapeutic hypothermia. Resuscitation. 2013;84(10):1310–23. doi: 10.1016/j.resuscitation.2013.05.013.
    1. Sandroni C, Cavallaro F, Callaway CW, D’Arrigo S, Sanna T, Kuiper MA, et al. Predictors of poor neurological outcome in adult comatose survivors of cardiac arrest: a systematic review and meta-analysis. Part 2: Patients treated with therapeutic hypothermia. Resuscitation. 2013;84(10):1324–38. doi: 10.1016/j.resuscitation.2013.06.020.
    1. Sandroni C, Cariou A, Cavallaro F, Cronberg T, Friberg H, Hoedemaekers C, et al. Prognostication in comatose survivors of cardiac arrest: an advisory statement from the European Resuscitation Council and the European Society of Intensive Care Medicine. Resuscitation. 2014;85(12):1779–89. doi: 10.1016/j.resuscitation.2014.08.011.
    1. Steiner J, Bernstein HG, Bielau H, Berndt A, Brisch R, Mawrin C, et al. Evidence for a wide extra-astrocytic distribution of S100B in human brain. BMC Neurosci. 2007;8:2. doi: 10.1186/1471-2202-8-2.
    1. Unden J, Bellner J, Eneroth M, Alling C, Ingebrigtsen T, Romner B. Raised serum S100B levels after acute bone fractures without cerebral injury. J Trauma. 2005;58(1):59–61. doi: 10.1097/01.TA.0000130613.35877.75.
    1. Unden J, Christensson B, Bellner J, Alling C, Romner B. Serum S100B levels in patients with cerebral and extracerebral infectious disease. Scand J Infect Dis. 2004;36(1):10–3. doi: 10.1080/00365540310017294.
    1. Nielsen N, Wetterslev J, Cronberg T, Erlinge D, Gasche Y, Hassager C, et al. Targeted temperature management at 33 °C versus 36 °C after cardiac arrest. N Engl J Med. 2013;369(23):2197–206. doi: 10.1056/NEJMoa1310519.
    1. Nielsen N, Wetterslev J, al-Subaie N, Andersson B, Bro-Jeppesen J, Bishop G, et al. Target Temperature Management after out-of-hospital cardiac arrest—a randomized, parallel-group, assessor-blinded clinical trial—rationale and design. Am Heart J. 2012;163(4):541–8. doi: 10.1016/j.ahj.2012.01.013.
    1. Nielsen N, Winkel P, Cronberg T, Erlinge D, Friberg H, Gasche Y, et al. Detailed statistical analysis plan for the target temperature management after out-of-hospital cardiac arrest trial. Trials. 2013;14:300. doi: 10.1186/1745-6215-14-300.
    1. Jennett B, Bond M. Assessment of outcome after severe brain damage. Lancet. 1975;1(7905):480–4. doi: 10.1016/S0140-6736(75)92830-5.
    1. Stammet P, Collignon O, Hassager C, Wise MP, Hovdenes J, Aneman A, et al. Neuron-specific enolase as a predictor of death or poor neurological outcome after out-of-hospital cardiac arrest and targeted temperature management at 33 °C and 36 °C. J Am Coll Cardiol. 2015;65(19):2104–14. doi: 10.1016/j.jacc.2015.03.538.
    1. Pfeifer R, Franz M, Figulla HR. Hypothermia after cardiac arrest does not affect serum levels of neuron-specific enolase and protein S-100b. Acta Anaesthesiol Scand. 2014;58(9):1093–100. doi: 10.1111/aas.12386.
    1. Tiainen M, Roine RO, Pettila V, Takkunen O. Serum neuron-specific enolase and S-100B protein in cardiac arrest patients treated with hypothermia. Stroke. 2003;34(12):2881–6. doi: 10.1161/01.STR.0000103320.90706.35.
    1. Rundgren M, Karlsson T, Nielsen N, Cronberg T, Johnsson P, Friberg H. Neuron specific enolase and S-100B as predictors of outcome after cardiac arrest and induced hypothermia. Resuscitation. 2009;80(7):784–9. doi: 10.1016/j.resuscitation.2009.03.025.
    1. Stammet P, Wagner DR, Gilson G, Devaux Y. Modeling serum level of s100β and bispectral index to predict outcome after cardiac arrest. J Am Coll Cardiol. 2013;62(9):851–8. doi: 10.1016/j.jacc.2013.04.039.
    1. Einav S, Kaufman N, Algur N, Kark JD. Modeling serum biomarkers S100β and neuron-specific enolase as predictors of outcome after out-of-hospital cardiac arrest: an aid to clinical decision making. J Am Coll Cardiol. 2012;60(4):304–11. doi: 10.1016/j.jacc.2012.04.020.
    1. Bottiger BW, Mobes S, Glatzer R, Bauer H, Gries A, Bartsch P, et al. Astroglial protein S-100 is an early and sensitive marker of hypoxic brain damage and outcome after cardiac arrest in humans. Circulation. 2001;103(22):2694–8. doi: 10.1161/01.CIR.103.22.2694.
    1. Martens P, Raabe A, Johnsson P. Serum S-100 and neuron-specific enolase for prediction of regaining consciousness after global cerebral ischemia. Stroke. 1998;29(11):2363–6. doi: 10.1161/01.STR.29.11.2363.
    1. Larsson IM, Wallin E, Kristofferzon ML, Niessner M, Zetterberg H, Rubertsson S. Post-cardiac arrest serum levels of glial fibrillary acidic protein for predicting neurological outcome. Resuscitation. 2014;85(12):1654–61. doi: 10.1016/j.resuscitation.2014.09.007.
    1. Shinozaki K, Oda S, Sadahiro T, Nakamura M, Abe R, Nakada TA, et al. Serum S-100B is superior to neuron-specific enolase as an early prognostic biomarker for neurological outcome following cardiopulmonary resuscitation. Resuscitation. 2009;80(8):870–5. doi: 10.1016/j.resuscitation.2009.05.005.
    1. Westaby S, Johnsson P, Parry AJ, Blomqvist S, Solem JO, Alling C, et al. Serum S100 protein: a potential marker for cerebral events during cardiopulmonary bypass. Ann Thorac Surg. 1996;61(1):88–92. doi: 10.1016/0003-4975(95)00904-3.
    1. Undén J, Ingebrigtsen T, Romner B, Scandinavian Neurotrauma Committee (SNC) Scandinavian guidelines for initial management of minimal, mild and moderate head injuries in adults: an evidence and consensus-based update. BMC Med. 2013;11:50. doi: 10.1186/1741-7015-11-50.
    1. Zandbergen EG, Hijdra A, Koelman JH, Hart AA, Vos PE, Verbeek MM, et al. Prediction of poor outcome within the first 3 days of postanoxic coma. Neurology. 2006;66(1):62–8. doi: 10.1212/01.wnl.0000191308.22233.88.
    1. Nolan JP, Soar J, Cariou A, Cronberg T, Moulaert VR, Deakin CD, et al. European Resuscitation Council and European Society of Intensive Care Medicine Guidelines for Post-resuscitation Care 2015: Section 5 of the European Resuscitation Council Guidelines for Resuscitation 2015. Resuscitation. 2015;95:202–22. doi: 10.1016/j.resuscitation.2015.07.018.

Source: PubMed

3
Prenumerera