Evidence that adiponectin receptor 1 activation exacerbates ischemic neuronal death

John Thundyil, Sung-Chun Tang, Eitan Okun, Kausik Shah, Vardan T Karamyan, Yu-I Li, Trent M Woodruff, Stephen M Taylor, Dong-Gyu Jo, Mark P Mattson, Thiruma V Arumugam, John Thundyil, Sung-Chun Tang, Eitan Okun, Kausik Shah, Vardan T Karamyan, Yu-I Li, Trent M Woodruff, Stephen M Taylor, Dong-Gyu Jo, Mark P Mattson, Thiruma V Arumugam

Abstract

Background: Adiponectin is a hormone produced in and released from adipose cells, which has been shown to have anti-diabetic and anti-inflammatory actions in peripheral cells. Two cell surface adiponectin receptors (ADRs) mediate the majority of the known biological actions of adiponectin. Thus far, ADR expression in the brain has been demonstrated in the arcuate and the paraventricular nucleus of hypothalamus, where its activation affects food intake. Recent findings suggest that levels of circulating adiponectin increase after an ischemic stroke, but the role of adiponectin receptor activation in stroke pathogenesis and its functional outcome is unclear.

Methods: Ischemic stroke was induced in C57BL/6 mice by middle cerebral artery occlusion (MCAO) for 1 h, followed by reperfusion. Primary cortical neuronal cultures were established from individual embryonic neocortex. For glucose deprivation (GD), cultured neurons were incubated in glucose-free Locke's medium for 6, 12 or 24 h. For combined oxygen and glucose deprivation (OGD), neurons were incubated in glucose-free Locke's medium in an oxygen-free chamber with 95% N2/5% CO2 atmosphere for either 3, 6, 9, 12 or 24 h. Primary neurons and brain tissues were analysed for Adiponectin and ADRs using reverse transcriptase polymerase chain reaction (RT-PCR), immunoblot and immunochemistry methods.

Results: Cortical neurons express ADR1 and ADR2, and that the levels of ADR1 are increased in neurons in response to in vitro or in vivo ischemic conditions. Neurons treated with either globular or trimeric adiponectin exhibited increased vulnerability to oxygen and glucose deprivation which was associated with increased activation of a pro-apoptotic signaling cascade involving p38 mitogen-activated protein kinase (p38MAPK) and AMP-activated protein kinase (AMPK).

Conclusions: This study reveals a novel pathogenic role for adiponectin and adiponectin receptor activation in ischemic stroke. We show that cortical neurons express ADRs and reveal a pro-apoptotic role for ADR1 activation in neurons, which may render them vulnerable to ischemic death.

Figures

Figure 1
Figure 1
Neurons express ADR1 and ADR2 and respond to oxygen and glucose deprivation. (A) ADR1 and ADR2 mRNA are present in cultured cortical neurons determined by single-cell RT-PCR analysis. The numbers indicate the number of neurons from which RNA was amplified; 1 and 3 cortical neurons consistently yielded a positive PCR signal for the ADR1 and ADR2 with exactly predicted size. (B) Cortical neurons subjected to OGD for the indicated times show increased levels of ADR1 and ADR2 mRNA in a time-dependent manner. (C) Immunoblot analysis of proteins in cell lysates of neurons in control cultures and cultures subjected to OGD for 3-24 h. OGD resulted in increased levels of ADR1 and ADR2 (D) ADR1 immunoreactivity (red) in cultured neurons; cells were counterstained with DAPI (blue) to label all nuclei. Arrow points to the axon of a neuron and arrowheads point to dendrites of the same neuron. (E) Cortical neurons subjected to OGD following globular adiponectin treatment show increased levels of ADR1.
Figure 2
Figure 2
Cerebral ischemia increases ADRs immunoreactivity in the brain. (A) Immunoblot analysis of protein samples from the cerebral cortex of sham operated control mice and mice subjected to 1 h cerebral ischemia and 1-24 h reperfusion. Ischemia resulted in rapid increases in the levels of ADRs immunoreactivities in neurons in the penumbra area (P). (Scale bars: 50 μM). (B) Images of brain sections showing ADR1 immunoreactivities (green) and NeuN (neuronal marker) in mice subjected to cerebral ischemia (1 h) and reperfusion (24 h). (C) Adiponectin accumulates in vessels like structures (large yellow arrow) and in parenchyma (small yellow arrow) in the human ischemic brain. (D) Control brain tissue stained with secondary antibody shows no staining.
Figure 3
Figure 3
ADR activation mediates neuronal cell death following in vitro ischemia-like conditions. (A, B) Neuronal cultures were treated with 10 μg of the globular adiponectin (gAd) and then subjected to OGD for 12 h (A) or GD for 24 h (B). Proteins in cell lysates were then subjected to immunoblot analysis by using the indicated antibodies. The gAd treatment enhanced OGD or GD-induced increases in levels of p-AMPK, p-38 MAPK and activated caspase-3. (C-D) Globular adiponectin (gAd) and trimeric adiponectin (tAd) treatment exacerbates OGD induced death of cultured primary neurons. Neuronal cell death was quantified 12 h later. Values are mean ± s.e.m. (n = 6-10 cultures). ***P < 0.0001 compared to OGD or vehicle treated OGD value, *P < 0.05 compared to OGD or vehicle treated OGD value. (E) Globular adiponectin (gAd) treatment exacerbates GD induced death of cultured primary neurons. Neuronal cell death was quantified 24 h later. Values are mean ± s.e.m. (n = 6-10 cultures). ***P < 0.0001 compared to GD or vehicle treated GD value.

References

    1. Fruebis J, Tsao TS, Javorschi S, Ebbets-Reed D, Erickson MR, Yen FT, Bihain BE, Lodish HF. Proteolytic cleavage product of 30-kDa adipocyte complement-related protein increases fatty acid oxidation in muscle and causes weight loss in mice. Proc Natl Acad Sci USA. 2001;98:2005–2010. doi: 10.1073/pnas.041591798.
    1. Kadowaki T, Yamauchi T, Kubota N, Hara K, Ueki K, Tobe K. Adiponectin and adiponectin receptors in insulin resistance, diabetes, and the metabolic syndrome. J Clin Invest. 2006;116:1784–1792. doi: 10.1172/JCI29126.
    1. Ogunwobi OO, Beales IL. Globular adiponectin, acting via adiponectin receptor-1, inhibits leptin-stimulated oesophageal adenocarcinoma cell proliferation. Mol Cell Endocrinol. 2008;285:43–50. doi: 10.1016/j.mce.2008.01.023.
    1. Asada K, Yoshiji H, Noguchi R, Ikenaka Y, Kitade M, Kaji K, Yoshii J, Yanase K, Namisaki T, Yamazaki M, Tsujimoto T, Akahane T, Uemura M, Fukui H. Crosstalk between high-molecular-weight adiponectin and T-cadherin during liver fibrosis development in rats. Int J Mol Med. 2007;20:725–729.
    1. Iwabu M, Yamauchi T, Okada-Iwabu M, Sato K, Nakagawa T, Funata M, Yamaguchi M, Namiki S, Nakayama R, Tabata M, Ogata H, Kubota N, Takamoto I, Hayashi YK, Yamauchi N, Waki H, Fukayama M, Nishino I, Tokuyama K, Ueki K, Oike Y, Ishii S, Hirose K, Shimizu T, Touhara K, Kadowaki T. Adiponectin and AdipoR1 regulate PGC-1alpha and mitochondria by Ca(2+) and AMPK/SIRT1. Nature. 2010;464:1313–1319. doi: 10.1038/nature08991.
    1. Wanninger J, Neumeier M, Weigert J, Bauer S, Weiss TS, Schäffler A, Krempl C, Bleyl C, Aslanidis C, Schölmerich J, Buechler C. Adiponectin-stimulated CXCL8 release in primary human hepatocytes is regulated by ERK1/ERK2, p38 MAPK, NF-kappaB, and STAT3 signaling pathways. Am J Physiol Gastrointest Liver Physiol. 2009;297:G611–618. doi: 10.1152/ajpgi.90644.2008.
    1. Tang CH, Lu ME. Adiponectin increases motility of human prostate cancer cells via adipoR, p38, AMPK, and NF-kappaB pathways. The Prostate. 2009;69:1781–1789. doi: 10.1002/pros.21029.
    1. Guillod-Maximin E, Roy AF, Vacher CM, Aubourg A, Bailleux V, Lorsignol A, Pénicaud L, Parquet M, Taouis M. Adiponectin receptors are expressed in hypothalamus and colocalized with proopiomelanocortin and neuropeptide Y in rodent arcuate neurons. J Endocrinol. 2009;200:93–105. doi: 10.1677/JOE-08-0348.
    1. Psilopanagioti A, Papadaki H, Kranioti EF, Alexandrides TK, Varakis JN. Expression of adiponectin and adiponectin receptors in human pituitary gland and brain. Neuroendocrinology. 2009;89:38–47. doi: 10.1159/000151396.
    1. Li J, Zeng Z, Viollet B, Ronnett GV, McCullough LD. Neuroprotective effects of adenosine monophosphate-activated protein kinase inhibition and gene deletion in stroke. Stroke. 2007;38:2992–2999. doi: 10.1161/STROKEAHA.107.490904.
    1. Piao CS, Kim JB, Han PL, Lee JK. Administration of the p38 MAPK inhibitor SB203580 affords brain protection with a wide therapeutic window against focal ischemic insult. J Neurosci Res. 2003;73:537–544. doi: 10.1002/jnr.10671.
    1. Yatomi K, Miyamoto N, Komine-Kobayashi M, Liu M, Oishi H, Arai H, Hattori N, Urabe T. Pathophysiological dual action of adiponectin after transient focal ischemia in mouse brain. Brain Res. 2009;1297:169–176. doi: 10.1016/j.brainres.2009.08.039.
    1. Okun E, Arumugam TV, Tang SC, Gleichmann M, Albeck M, Sredni B, Mattson MP. The organotellurium compound ammonium trichloro(dioxoethylene-0,0') tellurate enhances neuronal survival and improves functional outcome in an ischemic stroke model in mice. J Neurochem. 2007;102:1232–1241. doi: 10.1111/j.1471-4159.2007.04615.x.
    1. Jeng JS, Huang KM, Ya YT, Yip PK. Acta Neurologica Taiwanica. 2000. pp. 311–316.
    1. Mao X, Kikani CK, Riojas RA, Langlais P, Wang L, Ramos FJ, Fang Q, Christ-Roberts CY, Hong JY, Kim RY, Liu F, Dong LQ. APPL1 binds to adiponectin receptors and mediates adiponectin signalling and function. Nat Cell Biol. 2006;8:516–523. doi: 10.1038/ncb1404.
    1. Tilg H, Moschen AR. Adipocytokines: mediators linking adipose tissue, inflammation and immunity. Nat Rev Immunol. 2006;6:772–783. doi: 10.1038/nri1937.
    1. Luo N, Liu J, Chung BH, Yang Q, Klein RL, Garvey WT, Fu Y. Macrophage adiponectin expression improves insulin sensitivity and protects against inflammation and atherosclerosis. Diabetes. 2010;59:791–799. doi: 10.2337/db09-1338.
    1. Wang JH, Lee CJ, Lee CC, Chen YC, Lee RP, Hsu BG. Fasting adiponectin is inversely correlated with metabolic syndrome in patients with coronary artery disease. Intern Med. 2010;49:739–747. doi: 10.2169/internalmedicine.49.3093.
    1. Yoon MJ, Lee GY, Chung JJ, Ahn YH, Hong SH, Kim JB. Adiponectin increases fatty acid oxidation in skeletal muscle cells by sequential activation of AMP-activated protein kinase, p38 mitogen-activated protein kinase, and peroxisome proliferator-activated receptor alpha. Diabetes. 2006;55:2562–2570. doi: 10.2337/db05-1322.
    1. Yamauchi T, Kamon J, Minokoshi Y, Ito Y, Waki H, Uchida S, Yamashita S, Noda M, Kita S, Ueki K, Eto K, Akanuma Y, Froguel P, Foufelle F, Ferre P, Carling D, Kimura S, Nagai R, Kahn BB, Kadowaki T. Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase. Nat Med. 2002;8:1288–1295. doi: 10.1038/nm788.
    1. Kleman AM, Yuan JY, Aja S, Ronnett GV, Landree LE. Physiological glucose is critical for optimized neuronal viability and AMPK responsiveness in vitro. J Neurosci Methods. 2008;167:292–301. doi: 10.1016/j.jneumeth.2007.08.028.
    1. Nozaki K, Nishimura M, Hashimoto N. Mitogen-activated protein kinases and cerebral ischemia. Mol Neurobiol. 2001;23:1–19. doi: 10.1385/MN:23:1:01.
    1. Barone FC, Irving EA, Ray AM, Lee JC, Kassis S, Kumar S, Badger AM, Legos JJ, Erhardt JA, Ohlstein EH, Hunter AJ, Harrison DC, Philpott K, Smith BR, Adams JL, Parsons AA. Inhibition of p38 mitogen-activated protein kinase provides neuroprotection in cerebral focal ischemia. Med Res Rev. 2001;21:129–145. doi: 10.1002/1098-1128(200103)21:2<129::AID-MED1003>;2-H.
    1. Tang SC, Arumugam TV, Xu X, Cheng A, Mughal MR, Jo DG, Lathia JD, Siler DA, Chigurupati S, Ouyang X, Magnus T, Camandola S, Mattson MP. Pivotal role for neuronal Toll-like receptors in ischemic brain injury and functional deficits. Proc Natl Acad Sci USA. 2007;104:13798–13803. doi: 10.1073/pnas.0702553104.
    1. Waki H, Yamauchi T, Kamon J, Kita S, Ito Y, Hada Y, Uchida S, Tsuchida A, Takekawa S, Kadowaki T. Generation of globular fragment of adiponectin by leukocyte elastase secreted by monocytic cell line THP-1. Endocrinology. 2005;146:790–796. doi: 10.1210/en.2004-1096.
    1. Nishimura M, Izumiya Y, Higuchi A, Shibata R, Qiu J, Kudo C, Shin HK, Moskowitz MA, Ouchi N. Adiponectin prevents cerebral ischemic injury through endothelial nitric oxide synthase dependent mechanisms. Circulation. 2008;117:216–23. doi: 10.1161/CIRCULATIONAHA.107.725044.
    1. Arumugam TV, Granger DN, Mattson MP. Stroke and T-cells. Neuromolecular Med. 2005;7:229–242. doi: 10.1385/NMM:7:3:229.
    1. Ishikawa M, Vowinkel T, Stokes KY, Arumugam TV, Yilmaz G, Nanda A, Granger DN. CD40/CD40 ligand signaling in mouse cerebral microvasculature after focal ischemia/reperfusion. Circulation. 2005;111:1690–1696. doi: 10.1161/01.CIR.0000160349.42665.0C.
    1. Haugen F, Drevon CA. Activation of nuclear factor-kappaB by high molecular weight and globular adiponectin. Endocrinology. 2007;148:5478–86. doi: 10.1210/en.2007-0370.
    1. Hattori Y, Hattori S, Kasai K. Globular Adiponectin Activates Nuclear Factor-κB in Vascular Endothelial Cells, Which in Turn Induces Expression of Proinflammatory and Adhesion Molecule Genes. Diabetes Care. 2006;29:139–141. doi: 10.2337/diacare.29.01.06.dc05-1364.
    1. Tomizawa A, Hattori Y, Kasai K, Nakano Y. Adiponectin induces NF-κB activation that leads to suppression of cytokine-induced NF-κB activation in vascular endothelial cells: globular adiponectin vs. high molecular weight adiponectin. Diabetes and Vascular Disease Research. 2008;5:123–127. doi: 10.3132/dvdr.2008.020.
    1. Bråkenhielm E, Veitonmäki N, Cao R, Kihara S, Matsuzawa Y, Zhivotovsky B, Funahashi T, Cao Y. Adiponectin-induced antiangiogenesis and antitumor activity involve caspase-mediated endothelial cell apoptosis. Proc Natl Acad Sci USA. 2004;1018:2476–2481. doi: 10.1073/pnas.0308671100.
    1. Arita Y, Kihara S, Ouchi N, Takahashi M, Maeda K, Miyagawa J, Hotta K, Shimomura I, Nakamura T, Miyaoka K, Kuriyama H, Nishida M, Yamashita S, Okubo K, Matsubara K, Muraguchi M, Ohmoto Y, Funahashi T, Matsuzawa Y. Paradoxical decrease of an adipose-specific protein, adiponectin, in obesity. Biochem Biophys Res Commun. 1999;257:79–83. doi: 10.1006/bbrc.1999.0255.
    1. Berg AH, Combs TP, Du X, Brownlee M, Scherer PE. The adipocyte-secreted protein Acrp30 enhances hepatic insulin action. Nat Med. 2001;7:947–53. doi: 10.1038/90992.

Source: PubMed

3
Prenumerera