Clinical Data on Daptomycin plus Ceftaroline versus Standard of Care Monotherapy in the Treatment of Methicillin-Resistant Staphylococcus aureus Bacteremia

Matthew Geriak, Fadi Haddad, Khulood Rizvi, Warren Rose, Ravina Kullar, Kerry LaPlante, Marie Yu, Logan Vasina, Krista Ouellette, Marcus Zervos, Victor Nizet, George Sakoulas, Matthew Geriak, Fadi Haddad, Khulood Rizvi, Warren Rose, Ravina Kullar, Kerry LaPlante, Marie Yu, Logan Vasina, Krista Ouellette, Marcus Zervos, Victor Nizet, George Sakoulas

Abstract

Vancomycin (VAN) and daptomycin (DAP) are approved as a monotherapy for methicillin-resistant Staphylococcus aureus (MRSA) bacteremia. A regimen of daptomycin plus ceftaroline (DAP+CPT) has shown promise in published case series of MRSA salvage therapy, but no comparative data exist to compare up-front DAP+CPT head-to-head therapy versus standard monotherapy as an initial treatment. In a pilot study, we evaluated 40 adult patients who were randomized to receive 6 to 8 mg/kg of body weight per day of DAP and 600 mg intravenous (i.v.) CPT every 8 h (q8h) (n = 17) or standard monotherapy (n = 23) with vancomycin (VAN; dosed to achieve serum trough concentrations of 15 to 20 mg/liter; n = 21) or 6 to 8 mg/kg/day DAP (n = 2). Serum drawn on the first day of bacteremia was sent to a reference laboratory post hoc for measurement of interleukin-10 (IL-10) concentrations and correlation to in-hospital mortality. Sources of bacteremia, median Pitt bacteremia scores, Charlson comorbidity indices, and median IL-10 serum concentrations were similar in both groups. Although the study was initially designed to examine bacteremia duration, we observed an unanticipated in-hospital mortality difference of 0% (0/17) for combination therapy and 26% (6/23) for monotherapy (P = 0.029), causing us to halt the study. Among patients with an IL-10 concentration of >5 pg/ml, 0% (0/14) died in the DAP+CPT group versus 26% (5/19) in the monotherapy group (P = 0.057). Here, we share the full results of this preliminary (but aborted) assessment of early DAP+CPT therapy versus standard monotherapy in MRSA bacteremia, hoping to encourage a more definitive clinical trial of its potential benefits against this leading cause of infection-associated mortality. (The clinical study discussed in this paper has been registered at ClinicalTrials.gov under identifier NCT02660346.).

Keywords: bacteremia; ceftaroline; daptomycin; methicillin-resistant Staphylococcus aureus; mortality; vancomycin.

Copyright © 2019 Geriak et al.

Figures

FIG 1
FIG 1
Survival analysis of patients receiving daptomycin plus ceftaroline compared with those receiving standard of care in a prospective randomized study. Day 0 represents the day of first positive blood culture. Significance of mortality difference at 30 days (P = 0.048) and 60 days (P = 0.028).

References

    1. Wang FD, Chen YY, Chen TL, Liu CY. 2008. Risk factors and mortality in patients with nosocomial Staphylococcus aureus bacteremia. Am J Infect Control 36:118–122. doi:10.1016/j.ajic.2007.02.005.
    1. van Hal SJ, Jensen SO, Vaska VL, Espedido BA, Paterson DL, Gosbell IB. 2012. Predictors of mortality in Staphylococcus aureus bacteremia. Clin Microbiol Rev 25:362–386. doi:10.1128/CMR.05022-11.
    1. Kern WV. 2010. Management of Staphylococcus aureus bacteremia and endocarditis: progresses and challenges. Curr Opin Infect Dis 23:346–358. doi:10.1097/QCO.0b013e32833bcc8a.
    1. Cosgrove S, Sakoulas G, Perencevich EN, Schwaber MJ, Karchmer AW, Carmeli Y. 2003. Mortality related to methicillin-resistant Staphylococcus aureus compared to methicillin-susceptible Staphylococcus aureus: a meta-analysis. Clin Infect DIS 36:53–59. doi:10.1086/345476.
    1. Chang F-Y, Peacock JE, Musher DM, Triplett P, MacDonald BB, Mylotte JM, O’Donnell A, Wagener MM, Yu VL. 2003. Staphylococcus aureus bacteremia: recurrence and the impact of antibiotic treatment in a prospective multicenter study. Medicine 82:333–339. doi:10.1097/01.md.0000091184.93122.09.
    1. Sakoulas G, Okumura CY, Thienphrapa W, Olson J, Nonejuie P, Dam Q, Dhand A, Pogliano J, Yeaman MR, Hensler ME, Bayer AS, Nizet V. 2014. Nafcillin enhances innate immune-mediated killing of methicillin-resistant Staphylococcus aureus. J Mol Med 92:139–149. doi:10.1007/s00109-013-1100-7.
    1. Dhand A, Bayer AS, Pogliano J, Yang SJ, Bolaris M, Nizet V, Wang G, Sakoulas G. 2011. Use of antistaphylococcal beta-lactams to increase daptomycin activity in eradicating persistent bacteremia due to methicillin-resistant Staphylococcus aureus: role of enhanced daptomycin binding. Clin Infect Dis 53:158–163. doi:10.1093/cid/cir340.
    1. Davis JS, Sud A, O'Sullivan MVN, Robinson JO, Ferguson PE, Foo H, van Hal SJ, Ralph AP, Howden BP, Binks PM, Kirby A, Tong SYC; Combination Antibiotics for MEthicillin Resistant Staphylococcus aureus (CAMERA) study group; Combination Antibiotics for MEthicillin Resistant Staphylococcus aureus (CAMERA) study group; Tong S, Davis J, Binks P, Majumdar S, Ralph A, Baird R, Gordon C, Jeremiah C, Leung G, Brischetto A, Crowe A, Dakh F, Whykes K, Kirkwood M, Sud A, Menon M, Somerville L, Subedi S, Owen S, O'Sullivan M, Liu E, Zhou F, Robinson O, Coombs G, Ferguson P, Ralph A, Liu E, Pollet S, Van Hal S, Foo H, Van Hal S, Davis R. 2016. Combination of vancomycin and β-Lactam therapy for methicillin-resistant Staphylococcus aureus bacteremia: a pilot multicenter randomized controlled trial. Clin Infect Dis 62:173–180. doi:10.1093/cid/civ808.
    1. Fowler VG Jr, Boucher HW, Corey GR, Abrutyn E, Karchmer AW, Rupp ME, Levine DP, Chambers HF, Tally FP, Vigliani GA, Cabell CH, Link AS, DeMeyer I, Filler SG, Zervos M, Cook P, Parsonnet J, Bernstein JM, Price CS, Forrest GN, Fätkenheuer G, Gareca M, Rehm SJ, Brodt HR, Tice A, Cosgrove SE; S. aureus Endocarditis and Bacteremia Study Group. 2006. Daptomycin versus standard therapy for bacteremia and endocarditis caused by Staphylococcus aureus. N Engl J Med 355:653–665. doi:10.1056/NEJMoa053783.
    1. Liu C, Bayer A, Cosgrove SE, Daum RS, Fridkin SK, Gorwitz RJ, Kaplan SL, Karchmer AW, Levine DP, Murray BE, Rybak Talan JM, Chambers DA. 2011. Clinical practice guidelines by the Infectious Diseases Society of America for the treatment of methicillin-resistant Staphylococcus aureus infections in adults and children. Clin Infect Dis 52:e18–e55. doi:10.1093/cid/ciq146.
    1. Rehm SJ, Boucher H, Levine D, Campion M, Eisenstein BI, Vigliani GA, Corey GR, Abrutyn E. 2008. Daptomycin versus vancomycin plus gentamicin for treatment of bacteraemia and endocarditis due to Staphylococcus aureus: subset analysis of patients infected with methicillin-resistant isolates. J Antimicrob Chemother 62:1413–1421. doi:10.1093/jac/dkn372.
    1. Hawkins C, Huang J, Jin N, Noskin GA, Zembower TR, Bolon M. 2007. Persistent Staphylococcus aureus bacteremia: an analysis of risk factors and outcomes. Arch Intern Med 167:1861–1867. doi:10.1001/archinte.167.17.1861.
    1. Pastagia M, Kleinman LC, Cruz EG, Jenkins SG. 2012. Predicting risk for death from MRSA bacteremia. Emerg Infect Dis 18:1072–1080. doi:10.3201/eid1807.101371.
    1. Sakoulas G, Moise PA, Casapao AM, Nonejuie P, Olson J, Okumura CY, Rybak MJ, Kullar R, Dhand A, Rose WE, Goff DA, Bressler AM, Lee Y, Pogliano J, Johns S, Kaatz GW, Ebright JR, Nizet V. 2014. Antimicrobial salvage therapy for persistent staphylococcal bacteremia using daptomycin plus ceftaroline. Clin Ther 36:1317–1333. doi:10.1016/j.clinthera.2014.05.061.
    1. Rose WE, Eickhoff JC, Shukla SK, Pantrangi M, Rooijakkers S, Cosgrove SE, Nizet V, Sakoulas G. 2012. Elevated serum interleukin-10 at time of hospital admission is predictive of mortality in patients with Staphylococcus aureus bacteremia. J Infect Dis 206:1604–1611. doi:10.1093/infdis/jis552.
    1. Müller S, Wolf AJ, Iliev ID, Berg BL, Underhill DM, Liu GY. 2015. Poorly cross-linked peptidoglycan in MRSA due to mecA induction activates the inflammasome and exacerbates immunopathology. Cell Host Microbe 18:604–612. doi:10.1016/j.chom.2015.10.011.
    1. Randolph AG, Xu R, Novak T, Newhams MM, Bubeck Wardenburg J, Weiss SL, Sanders RC, Thomas NJ, Hall MW, Tarquinio KM, Cvijanovich N, Gedeit RG, Truemper EJ, Markovitz B, Hartman ME, Ackerman KG, Giuliano JS, Shein SL, Moffitt KL, Kong M, Sanders RC, Hefley G, Tellez D, Typpo K, Markovitz B, Morzov RSP, Graciano AL, Cvijanovich N, Flori H, Brumfield B, Anas N, Schwarz A, Vargas-Shiraishi O, McQuillen P, Sapru A, Mourani P, Czaja A, Carroll C, Giuliano JS, Tala J, Palmieri L, McLaughlin G, Paden M, Tarquinio K, Stone CL, Coates BM, Pinto N, Sullivan J, Montgomery V, Randolph AG, et al. 2019. Vancomycin monotherapy may be insufficient to treat methicillin-resistant Staphylococcus aureus coinfection in children with influenza-related critical illness. Clin Infect Dis 68:365–372. doi:10.1093/cid/ciy495.
    1. Rose WE, Shukla SK, Berti AD, Hayney MS, Henriquez KM, Ranzoni A, Cooper MA, Proctor RA, Nizet V, Sakoulas G. 2017. Increased endovascular Staphylococcus aureus inoculum is the link between serum IL-10 concentrations and mortality in patients with bacteremia. Clin Infect Dis 64:1406–1412. doi:10.1093/cid/cix157.
    1. Minejima E, Bensman J, She RC, Mack WJ, Tuan Tran M, Ny P, Lou M, Yamaki J, Nieberg P, Ho J, Wong-Beringer A. 2016. A dysregulated balance of pro-inflammatory and anti-inflammatory host cytokine response early during therapy predicts persistence and mortality in Staphylococcus aureus bacteremia. Crit Care Med 44:671–679. doi:10.1097/CCM.0000000000001465.
    1. Wong D, Wong T, Romney M, Leung V. 2016. Comparative effectiveness of beta-lactam versus vancomycin therapy in patients with methicillin-susceptible Staphylococcus aureus (MSSA) bacteremia. Ann Clin Microbiol Antimicrob 15:27–35. doi:10.1186/s12941-016-0143-3.
    1. Schweizer ML, Furuno JP, Harris AD, Johnson JK, Shardell MD, McGregor JC, Thom KA, Cosgrove SE, Sakoulas G, Perencevich EN. 2011. Comparative effectiveness of nafcillin or cefazolin versus vancomycin in methicillin-susceptible Staphylococcus aureus bacteremia. BMC Infect Dis 11:279–285. doi:10.1186/1471-2334-11-279.
    1. Kim SH, Kim KH, Kim HB, Kim NJ, Kim EC, Oh MD, Choe KW. 2008. Outcome of vancomycin treatment in patients with methicillin-susceptible Staphylococcus aureus bacteremia. Antimicrob Agents Chemother 52:192–197. doi:10.1128/AAC.00700-07.
    1. McDaniel JS, Perencevich EN, Diekema DJ, Herwaldt LA, Smith TC, Chrischilles EA, Dawson JD, Jiang L, Goto M, Schweizer ML. 2015. Comparative effectiveness of beta-lactams versus vancomycin for treatment of methicillin-susceptible Staphylococcus aureus bloodstream infections among 122 hospitals. Clin Infect Dis 61:361–367. doi:10.1093/cid/civ308.
    1. Otero JE, Graves CM, Gao Y, Olson TS, Dickinson CC, Chalus RJ, Vittetoe DA, Goetz DD, Callaghan JJ. 2016. Patient-reported allergies predict worse outcomes after hip and knee arthroplasty: results from a prospective cohort study. J Arthroplasty 31:2746–2749. doi:10.1016/j.arth.2016.07.040.
    1. Jeffres MN, Narayanan PP, Shuster JE, Schramm GE. 2016. Consequences of avoiding β-lactams in patients with β-lactam allergies. J Allergy Clin Immunol 137:1148–1153. doi:10.1016/j.jaci.2015.10.026.
    1. MacFadden DR, LaDelfa A, Leen J, Gold WL, Daneman N, Weber E, Al-Busaidi I, Petrescu D, Saltzman I, Devlin M, Andany N, Leis JA. 2016. Impact of reported beta-lactam allergy on inpatient outcomes: a multicenter prospective cohort study. Clin Infect Dis 63:904–910. doi:10.1093/cid/ciw462.
    1. Sakoulas G, Geriak M, Nizet V. 2019. Is a reported penicillin allergy sufficient grounds to forgo the multidimensional antimicrobial benefits of beta-lactam antibiotics? Clin Infect Dis 68:157–164. doi:10.1093/cid/ciy557.
    1. Holubar M, Meng L, Deresinski S. 2016. Bacteremia due to methicillin-resistant Staphylococcus aureus: new therapeutic approaches. Infect Dis Clin North America 30:491–507. doi:10.1016/j.idc.2016.02.009.
    1. Tong SYC, Nelson J, Paterson DL, Fowler VG Jr, Howden BP, Cheng AC, Chatfield M, Lioman J, Van Hal S, O’Sullivan M, Robinson JO, Yahav D, Lye D, Davis JS. 2016. CAMERA-2-combination antibiotic therapy for methicillin-resistant Staphylococcus aureus infection: study protocol for a randomised controlled trial. Trials 17:170. doi:10.1186/s13063-016-1295-3.
    1. Charlson ME, Pompei P, Ales KL, MacKenzie CR. 1987. A new method of classifying prognostic comorbidity in longitudinal studies: Development and validation. J Chronic Dis 40:373–383. doi:10.1016/0021-9681(87)90171-8.
    1. Thygesen SK, Christiansen CF, Christensen S, Lash T, Sørensen HT. 2011. The predictive value of ICD-10 diagnostic coding used to assess Charlson comorbidity index conditions in the population-based Danish National Registry of Patients. BMC Med Res Methodol 11:83. doi:10.1186/1471-2288-11-83.
    1. Rhee JY, Kwon KT, Ki HK, Shin SY, Jung DS, Chung DR, Ha BC, Peck KR, Song JH. 2009. Scoring systems for prediction of mortality in patients with intensive care unit-acquired sepsis: a comparison of the Pitt bacteremia score and the Acute Physiology and Chronic Health Evaluation II scoring systems. Shock 31:146–150. doi:10.1097/SHK.0b013e318182f98f.
    1. Chong YP, Park SJ, Kim HS, Kim ES, Kim MN, Park KH, Kim SH, Lee SO, Choi SH, Jeong JY, Woo JH, Kim YS. 2013. Persistent Staphylococcus aureus bacteremia: a prospective analysis of risk factors, outcomes, and microbiologic and genotypic characteristics of isolates. Medicine 92:98–108. doi:10.1097/MD.0b013e318289ff1e.

Source: PubMed

3
Prenumerera