Reproducibility of Transcranial Doppler ultrasound in the middle cerebral artery

Jakub Kaczynski, Rachel Home, Karen Shields, Matthew Walters, William Whiteley, Joanna Wardlaw, David E Newby, Jakub Kaczynski, Rachel Home, Karen Shields, Matthew Walters, William Whiteley, Joanna Wardlaw, David E Newby

Abstract

Background: Transcranial Doppler ultrasound remains the only imaging modality that is capable of real-time measurements of blood flow velocity and microembolic signals in the cerebral circulation. We here assessed the repeatability and reproducibility of transcranial Doppler ultrasound in healthy volunteers and patients with symptomatic carotid artery stenosis.

Methods: Between March and August 2017, we recruited 20 healthy volunteers and 20 patients with symptomatic carotid artery stenosis. In a quiet temperature-controlled room, two 1-h transcranial Doppler measurements of blood flow velocities and microembolic signals were performed sequentially on the same day (within-day repeatability) and a third 7-14 days later (between-day reproducibility). Levels of agreement were assessed by interclass correlation co-efficient.

Results: In healthy volunteers (31±9 years, 11 male), within-day repeatability of Doppler measurements were 0.880 (95% CI 0.726-0.950) for peak velocity, 0.867 (95% CI 0.700-0.945) for mean velocity, and 0.887 (95% CI 0.741-0.953) for end-diastolic velocity. Between-day reproducibility was similar but lower: 0.777 (95% CI 0.526-0.905), 0.795 (95% CI 0.558-0.913), and 0.674 (95% CI 0.349-0.856) respectively. In patients (72±11 years, 11 male), within-day repeatability of Doppler measurements were higher: 0.926 (95% CI 0.826-0.970) for peak velocity, 0.922 (95% CI 0.817-0.968) for mean velocity, and 0.868 (95% CI 0.701-0.945) for end-diastolic velocity. Similarly, between-day reproducibility revealed lower values: 0.800 (95% CI 0.567-0.915), 0.786 (95% CI 0.542-0.909), and 0.778 (95% CI 0.527-0.905) respectively. In both cohorts, the intra-observer Bland Altman analysis demonstrated acceptable mean measurement differences and limits of agreement between series of middle cerebral artery velocity measurements with very few outliers. In patients, the carotid stenoses were 30-40% (n = 9), 40-50% (n = 6), 50-70% (n = 3) and > 70% (n = 2). No spontaneous embolisation was detected in either of the groups.

Conclusions: Transcranial Doppler generates reproducible data regarding the middle cerebral artery velocities. However, larger studies are needed to validate its clinical applicability.

Trial registration: ClinicalTrial.gov (ID NCT 03050567), retrospectively registered on 15/05/2017.

Trial registration: ClinicalTrials.gov NCT03050567.

Keywords: Carotid artery stenosis; Ischaemic stroke; Microembolic signals; Transcranial Doppler.

Conflict of interest statement

Authors’ information

JK: Clinical Research Fellow presently supported by the British Heart Foundation Clinical Research Fellowship (FS/17/50/33061). RH: Medical student at University of Edinburgh. KS: Vascular technologist specialised in the transcranial Doppler imaging at Queen Elizabeth University Hospital in Glasgow. MW: Professor of Clinical Pharmacology, Head of the Undergraduate Medical School University of Glasgow and Director of Scottish Stroke Research Network. WW: MRC Clinician Scientist & Honorary Consultant Neurologist at Royal Infirmary of Edinburgh. JW: Head of Edinburgh Imaging, Director of Brain Research Imaging Centre, Honorary Consultant Neuroradiologist at Royal Infirmary of Edinburgh. DEN: British Heart Foundation John Wheatley Chair of Cardiology, Consultant Cardiologist at Royal Infirmary of Edinburgh.

Ethics approval and consent to participate

Ethical approval was granted by the South East Scotland Research Ethics Committee 01 (approval number 16/SS/0217), and written consent was obtained from all participants.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests to declare.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Figures

Fig. 1
Fig. 1
Three transcranial Doppler examinations of the same participant (visit 1: images a and b; visit 2: image c)
Fig. 2
Fig. 2
Repeatability in healthy volunteers (Examination 1 vs Examination 2): Bland Altman analysis for middle cerebral artery velocity. a) Peak. b) Mean. c) End-diastolic
Fig. 3
Fig. 3
Reproducibility in healthy volunteers (visit 1 vs Visit 2): Bland Altman analysis for middle cerebral artery velocity. a) Peak. b) Mean. c) End-diastolic
Fig. 4
Fig. 4
Repeatability in patients (Examination 1 vs Examination 2): Bland Altman analysis for middle cerebral artery velocity. a) Peak. b) Mean. c) End-diastolic
Fig. 5
Fig. 5
Reproducibility in patients (visit 1 vs Visit 2): Bland Altman analysis for middle cerebral artery velocity. a) Peak. b) Mean. c) End-diastolic

References

    1. Naylor AR. Why is the management of asymptomatic carotid disease so controversial? Surgeon. 2015;13:34–43. doi: 10.1016/j.surge.2014.08.004.
    1. Vavra AK, Eskandari MK. Treatment options for symptomatic carotid stenosis: timing and approach. Surgeon. 2015;13:44–51. doi: 10.1016/j.surge.2014.09.001.
    1. Writing G, Naylor AR, Ricco JB, de Borst GJ, Debus S, de Haro J, Halliday A, Hamilton G, Kakisis J, Kakkos S, Lepidi S, Markus HS, McCabe DJ, Roy J, Sillesen H, van den Berg JC, Vermassen F, Esvs Guidelines C, Kolh P, Chakfe N, Hinchliffe RJ, Koncar I, Lindholt JS, Vega de Ceniga M, Verzini F, Esvs Guideline R, Archie J, Bellmunt S, Chaudhuri A, Koelemay M, et al. Editor's Choice - Management of Atherosclerotic Carotid and Vertebral Artery Disease: 2017 clinical practice guidelines of the European Society for Vascular Surgery (ESVS) Eur J Vasc Endovasc Surg. 2018;55:3–81. doi: 10.1016/j.ejvs.2017.06.021.
    1. Valton L, Larrue V, le Traon AP, Massabuau P, Géraud G. Microembolic signals and risk of early recurrence in patients with stroke or transient ischemic attack. Stroke. 1998;29:2125–2128. doi: 10.1161/01.STR.29.10.2125.
    1. Totaro R, Marini C, Cannarsa C, Prencipe M. Reproducibility of transcranial Dopplersonography: a validation study. Ultrasound Med Biol. 1992;18:173–177. doi: 10.1016/0301-5629(92)90128-W.
    1. Markus HS. Transcranial Doppler detection of circulating cerebral emboli. A review Stroke. 1993;24:1246–1250. doi: 10.1161/01.STR.24.8.1246.
    1. Grotta JC, Alexandrov AV. Preventing Stroke. 2001.
    1. Lennard N, Smith J, Dumville J, Abbott R, Evans DH, London NJ, Bell PR, Naylor AR. Prevention of postoperative thrombotic stroke after carotid endarterectomy: the role of transcranial Doppler ultrasound. J Vasc Surg. 1997;26:579–584. doi: 10.1016/S0741-5214(97)70055-7.
    1. Abbott AL, Chambers BR, Stork JL, Levi CR, Bladin CF, Donnan GA. Embolic signals and prediction of ipsilateral stroke or transient ischemic attack in asymptomatic carotid stenosis: a multicenter prospective cohort study. Stroke. 2005;36:1128–1133. doi: 10.1161/01.STR.0000166059.30464.0a.
    1. Markus HS, Ackerstaff R, Babikian V, Bladin C, Droste D, Grosset D, Levi C, Russell D, Siebler M, Tegeler C. Intercenter agreement in reading Doppler embolic signals. Stroke. 1997;28:1307–1310. doi: 10.1161/01.STR.28.7.1307.
    1. Markus HS, Droste DW, Kaps M, Larrue V, Lees KR, Siebler M, Ringelstein EB. Dual antiplatelet therapy with clopidogrel and aspirin in symptomatic carotid stenosis evaluated using Doppler embolic signal detection. Circulation. 2005;111:2233–2240. doi: 10.1161/01.CIR.0000163561.90680.1C.
    1. Imray CH, Tiivas CA. Are some strokes preventable? The potential role of transcranial doppler in transient ischaemic attacks of carotid origin. The Lancet Neurology. 2005;4:580–586. doi: 10.1016/S1474-4422(05)70169-1.
    1. Spence JD. Transcranial Doppler monitoring for microemboli: a marker of a high-risk carotid plaque. Semin Vasc Surg. 2017;30:62–66. doi: 10.1053/j.semvascsurg.2017.04.011.
    1. Abbott AL, Levi CR, Stork JL, Donnan GA, Chambers BR. Timing of clinically significant microembolism after carotid endarterectomy. Cerebrovasc Dis. 2007;23:362–367. doi: 10.1159/000099135.
    1. Sarkar S, Ghosh S, Ghosh SK, Collier A. Role of transcranial Doppler ultrasonography in stroke. Postgrad Med J. 2007;83:683–689. doi: 10.1136/pgmj.2007.058602.
    1. Kimura K, Minematsu K, Koga M, Arakawa R, Yasaka M, Yamagami H, Nagatsuka K, Naritomi H, Yamaguchi T. Microembolic signals and diffusion-weighted MR imaging abnormalities in acute ischemic stroke. Am J Neuroradiol. 2001;22:1037–1042.
    1. Wolf O, Heider P, Heinz M, Poppert H, Sander D, Greil O, Weiss W, Hanke M, Eckstein H-H. Microembolic signals detected by transcranial Doppler sonography during carotid endarterectomy and correlation with serial diffusion-weighted imaging. Stroke. 2004;35:e373–e375. doi: 10.1161/.
    1. Babikian VL, Feldmann E, Wechsler LR, Newell DW, Gomez CR, Bogdahn U, Caplan LR, Spencer MP, Tegeler C, Ringelstein EB. Transcranial Doppler ultrasonography: year 2000 update. J Neuroimaging. 2000;10:101–115. doi: 10.1111/jon2000102101.
    1. Lennard N, Smith JL, Gaunt ME, Abbott RJ, London NJ, Bell PR, Naylor AR. A policy of quality control assessment helps to reduce the risk of intraoperative stroke during carotid endarterectomy. Eur J Vasc Endovasc Surg. 1999;17:234–240. doi: 10.1053/ejvs.1998.0723.
    1. Naylor AR, Hayes PD, Allroggen H, Lennard N, Gaunt ME, Thompson MM, London NJ, Bell PR. Reducing the risk of carotid surgery: a 7-year audit of the role of monitoring and quality control assessment. J Vasc Surg. 2000;32:750–759. doi: 10.1067/mva.2000.108007.
    1. Lennard NS, Vijayasekar C, Tiivas C, Chan CW, Higman DJ, Imray CH. Control of emboli in patients with recurrent or crescendo transient ischaemic attacks using preoperative transcranial Doppler-directed dextran therapy. Br J Surg. 2003;90:166–170. doi: 10.1002/bjs.4030.
    1. Demirkaya S, Uluc K, Bek S, Vural O. Normal blood flow velocities of basal cerebral arteries decrease with advancing age: a transcranial Doppler sonography study. Tohoku J Exp Med. 2008;214:145–149. doi: 10.1620/tjem.214.145.
    1. Aaslid R, Markwalder T-M, Nornes H. Noninvasive transcranial Doppler ultrasound recording of flow velocity in basal cerebral arteries. J Neurosurg. 1982;57:769–774. doi: 10.3171/jns.1982.57.6.0769.
    1. Arnolds BJ, von GM R, Transcranial Dopplersonography Examination technique and normal reference values. Ultrasound Med Biol. 1986;12:115–123. doi: 10.1016/0301-5629(86)90016-5.
    1. Krejza J, Mariak Z, Walecki J, Szydlik P, Lewko J, Ustymowicz A. Transcranial color Doppler sonography of basal cerebral arteries in 182 healthy subjects: age and sex variability and normal reference values for blood flow parameters. AJR Am J Roentgenol. 1999;172:213–218. doi: 10.2214/ajr.172.1.9888770.
    1. Hennerici M, Rautenberg W, Sitzer G, Schwartz A. Transcranial Doppler ultrasound for the assessment of intracranial arterial flow velocity--part 1. Examination technique and normal values. Surg Neurol. 1987;27:439–448. doi: 10.1016/0090-3019(87)90251-5.
    1. Ringelstein EB, Kahlscheuer B, Niggemeyer E, Otis SM. Transcranial Doppler sonography: anatomical landmarks and normal velocity values. Ultrasound Med Biol. 1990;16:745–761. doi: 10.1016/0301-5629(90)90039-F.
    1. Venkatesh B, Shen Q, Lipman J. Continuous measurement of cerebral blood flow velocity using transcranial Doppler reveals significant moment-to-moment variability of data in healthy volunteers and in patients with subarachnoid hemorrhage. Crit Care Med. 2002;30:563–569. doi: 10.1097/00003246-200203000-00011.
    1. Lindegaard K-F, Lundar T, Wiberg J, Sjøberg D, Aaslid R, Nornes H. Variations in middle cerebral artery blood flow investigated with noninvasive transcranial blood velocity measurements. Stroke. 1987;18:1025–1030. doi: 10.1161/01.STR.18.6.1025.
    1. Lindegaard K-F, Bakke SJ, Grolimund P, Aaslid R, Huber P, Nornes H. Assessment of intracranial hemodynamics in carotid artery disease by transcranial Doppler ultrasound. J Neurosurg. 1985;63:890–898. doi: 10.3171/jns.1985.63.6.0890.
    1. Grolimund P, Seiler RW. Age dependence of the flow velocity in the basal cerebral arteries—a transcranial Doppler ultrasound study. Ultrasound Med Biol. 1988;14:191–198. doi: 10.1016/0301-5629(88)90139-1.
    1. Niederkorn K, Myers LG, Nunn CL, Ball MR, McKinney WM. Three-dimensional transcranial Doppler blood flow mapping in patients with cerebrovascular disorders. Stroke. 1988;19:1335–1344. doi: 10.1161/01.STR.19.11.1335.
    1. Ley Pozo J, Bernd Ringelstein E. Noninvasive detection of occlusive disease of the carotid siphon and middle cerebral artery. Ann Neurol. 1990;28:640–647. doi: 10.1002/ana.410280507.
    1. Maeda H, Etani H, Handa N, Tagaya M, Oku N, Kim B-H, Naka M, Kinoshita N, Nukada T, Fukunaga R. A validation study on the reproducibility of transcranial Doppler velocimetry. Ultrasound Med Biol. 1990;16:9–14. doi: 10.1016/0301-5629(90)90080-V.
    1. McMahon CJ, McDermott P, Horsfall D, Selvarajah JR, King AT, Vail A. The reproducibility of transcranial Doppler middle cerebral artery velocity measurements: implications for clinical practice. Br J Neurosurg. 2007;21:21–27. doi: 10.1080/02688690701210539.
    1. Shen Q, Stuart J, Venkatesh B, Wallace J, Lipman J. Inter observer variability of the transcranial Doppler ultrasound technique: impact of lack of practice on the accuracy of measurement. J Clin Monit Comput. 1999;15:179–184. doi: 10.1023/A:1009925811965.
    1. Baumgartner RW, Mathis J, Sturzenegger M, Mattle HP. A validation study on the intraobserver reproducibility of transcranial color-coded duplex sonography velocity measurements. Ultrasound Med Biol. 1994;20:233–237. doi: 10.1016/0301-5629(94)90063-9.
    1. Best LM, Webb AC, Gurusamy KS, Cheng SF, Richards T. Transcranial Doppler ultrasound detection of microemboli as a predictor of cerebral events in patients with symptomatic and asymptomatic carotid disease: a systematic review and meta-analysis. Eur J Vasc Endovasc Surg. 2016;52:565–580. doi: 10.1016/j.ejvs.2016.05.019.
    1. King A, Markus HS. Doppler embolic signals in cerebrovascular disease and prediction of stroke risk: a systematic review and meta-analysis. Stroke. 2009;40:3711–3717. doi: 10.1161/STROKEAHA.109.563056.
    1. Ritter MA, Dittrich R, Thoenissen N, Ringelstein EB, Nabavi DG. Prevalence and prognostic impact of microembolic signals in arterial sources of embolism. A systematic review of the literature. J Neurol. 2008;255:953–961. doi: 10.1007/s00415-008-0638-8.
    1. Udesh R, Natarajan P, Thiagarajan K, Wechsler LR, Crammond DJ, Balzer JR, Thirumala PD. Transcranial Doppler monitoring in carotid Endarterectomy: a systematic review and meta-analysis. J Ultrasound Med. 2017;36:621–630. doi: 10.7863/ultra.16.02077.
    1. Markus H, Bland JM, Rose G, Sitzer M, Siebler M. How good is intercenter agreement in the identification of embolic signals in carotid artery disease? Stroke. 1996;27:1249–1252. doi: 10.1161/01.STR.27.7.1249.
    1. Cullinane M, Reid G, Dittrich R, Kaposzta Z, Ackerstaff R, Babikian V, Droste DW, Grossett D, Siebler M, Valton L, Markus HS. Evaluation of new online automated embolic signal detection algorithm, including comparison with panel of international experts. Stroke. 2000;31:1335–1341. doi: 10.1161/01.STR.31.6.1335.
    1. Ringelstein EB, Droste DW, Babikian VL, Evans DH, Grosset DG, Kaps M, Markus HS, Russell D, Siebler M. Consensus on microembolus detection by TCD. Stroke. 1998;29:725–729. doi: 10.1161/01.STR.29.3.725.
    1. Alexandrov AV, Sloan MA, Tegeler CH, Newell DN, Lumsden A, Garami Z, Levy CR, Wong LK, Douville C, Kaps M. Practice standards for transcranial Doppler (TCD) ultrasound. Part II. Clinical indications and expected outcomes. Journal of Neuroimaging. 2012;22:215–224. doi: 10.1111/j.1552-6569.2010.00523.x.
    1. Alexandrov AV, Sloan MA, Wong LK, Douville C, Razumovsky AY, Koroshetz WJ, Kaps M, Tegeler CH. Practice standards for transcranial Doppler ultrasound: part I—test performance. J Neuroimaging. 2007;17:11–18. doi: 10.1111/j.1552-6569.2006.00088.x.
    1. Itoh T, Matsumoto M, Handa N, Maeda H, Hougaku H, Hashimoto H, Etani H, Tsukamoto Y, Kamada T. Rate of successful recording of blood flow signals in the middle cerebral artery using transcranial Doppler sonography. Stroke. 1993;24:1192–1195. doi: 10.1161/01.STR.24.8.1192.
    1. Wijnhoud AD, Franckena M, van der Lugt A, Koudstaal PJ, Dippel ED. Inadequate acoustical temporal bone window in patients with a transient ischemic attack or minor stroke: role of skull thickness and bone density. Ultrasound Med Biol. 2008;34:923–929. doi: 10.1016/j.ultrasmedbio.2007.11.022.
    1. Markus HS. Transcranial Doppler ultrasound. Br Med Bull. 2000;56:378–388. doi: 10.1258/0007142001903021.
    1. Marinoni M, Ginanneschi A, Forleo P, Amaducci L. Technical limits in transcranial Doppler recording: Inadquate acoustic windows. Ultrasound Med Biol. 1997;23:1275–1277. doi: 10.1016/S0301-5629(97)00077-X.
    1. Stroobant N, Vingerhoets G. Test-retest reliability of functional transcranial Doppler ultrasonography. Ultrasound Med Biol. 2001;27:509–514. doi: 10.1016/S0301-5629(00)00325-2.
    1. Vingerhoets G, Stroobant N. Lateralization of cerebral blood flow velocity changes during cognitive tasks. A simultaneous bilateral transcranial Doppler study. Stroke. 1999;30:2152–2158. doi: 10.1161/01.STR.30.10.2152.
    1. Vingerhoets G, Stroobant N. Reliability and validity of day-to-day blood flow velocity reactivity in a single subject: an fTCD study. Ultrasound Med Biol. 2002;28:197–202. doi: 10.1016/S0301-5629(01)00506-3.
    1. Bragoni M, Feldmann E. Transcranial Doppler indices of intracranial hemodynamics. Neurosonology Boston: Mosby. 1996:129–40.
    1. Feldmann E, Wilterdink JL, Kosinski A, Lynn M, Chimowitz MI, Sarafin J, Smith HH, Nichols F, Rogg J, Cloft HJ, Wechsler L, Saver J, Levine SR, Tegeler C, Adams R, Sloan M, Stroke O. Neuroimaging of intracranial atherosclerosis trial I: the stroke outcomes and neuroimaging of intracranial atherosclerosis (SONIA) trial. Neurology. 2007;68:2099–2106. doi: 10.1212/01.wnl.0000261488.05906.c1.
    1. Lindegaard K-F, Bakke SJ, Aaslid R, Nornes H. Doppler diagnosis of intracranial artery occlusive disorders. J Neurol Neurosurg Psychiatry. 1986;49:510–518. doi: 10.1136/jnnp.49.5.510.
    1. Rorick MB, Nichols FT, Adams RJ. Transcranial Doppler correlation with angiography in detection of intracranial stenosis. Stroke. 1994;25:1931–1934. doi: 10.1161/01.STR.25.10.1931.
    1. Markus HS, Harrison MJ. Microembolic signal detection using ultrasound. Stroke. 1995;26:1517–1519. doi: 10.1161/01.STR.26.9.1517.
    1. Stork JL, Kimura K, Levi CR, Chambers BR, Abbott AL, Donnan GA. Source of microembolic signals in patients with high-grade carotid stenosis. Stroke. 2002;33:2014–2018. doi: 10.1161/01.STR.0000021002.17394.7F.
    1. Markus H. Monitoring embolism in real time. Circulation. 2000;102:826–828. doi: 10.1161/01.CIR.102.8.826.
    1. Dittrich R, Ritter MA, Droste DW. Microembolus detection by transcranial doppler sonography. Eur J Ultrasound. 2002;16:21–30. doi: 10.1016/S0929-8266(02)00046-0.
    1. Mackinnon AD, Aaslid R, Markus HS. Ambulatory transcranial Doppler cerebral embolic signal detection in symptomatic and asymptomatic carotid stenosis. Stroke. 2005;36:1726–1730. doi: 10.1161/.
    1. Mackinnon AD, Aaslid R, Markus HS. Long-term ambulatory monitoring for cerebral emboli using transcranial Doppler ultrasound. Stroke. 2004;35:73–78. doi: 10.1161/01.STR.0000106915.83041.0A.
    1. Sitzer M, Muller W, Siebler M, Hort W, Kniemeyer HW, Jancke L, Steinmetz H. Plaque ulceration and lumen thrombus are the main sources of cerebral microemboli in high-grade internal carotid artery stenosis. Stroke. 1995;26:1231–1233. doi: 10.1161/01.STR.26.7.1231.
    1. Verhoeven B, de Vries J, Pasterkamp G, Ackerstaff R, Schoneveld AH, Velema E, de Kleijn D, Moll FL. Carotid atherosclerotic plaque characteristics are associated with microembolization during carotid endarterectomy and procedural outcome. Stroke. 2005;36:1735–1740. doi: 10.1161/.
    1. Azarpazhooh MR, Chambers BR. Clinical application of transcranial Doppler monitoring for embolic signals. J Clin Neurosci. 2006;13:799–810. doi: 10.1016/j.jocn.2005.12.026.

Source: PubMed

3
Prenumerera