Mandibular positioning techniques to improve sleep quality in patients with obstructive sleep apnea: current perspectives

Sofie Wilkens Knappe, Liselotte Sonnesen, Sofie Wilkens Knappe, Liselotte Sonnesen

Abstract

The purpose of this article is to review 1) mandibular advancement device (MAD) - indication, treatment success, and side effects; 2) maxillomandibular advancement (MMA) surgery of the jaws - indication, treatment success, and side effects; and 3) current perspectives. Both MAD and MMA are administered to increase the upper airway volume and reduce the collapsibility of the upper airway. MAD is noninvasive and is indicated as a first-stage treatment in adult patients with mild-to-moderate obstructive sleep apnea (OSA) and in patients with severe OSA unable to adhere to continuous positive airway pressure (CPAP). MAD remains inferior to CPAP in reducing the apnea-hypopnea index (AHI) with a treatment success ranging between 24% and 72%. However, patient compliance to MAD is greater, and with regard to subjective sleepiness and health outcomes, MAD and CPAP have been found to be similarly effective. Short-term side effects of MAD are minor and often transient. Long-term side effects primarily appear as changes in the dental occlusion related to decreases in overjet and overbite. MMA is efficacious but highly invasive and indicated as a second-stage treatment in patients with moderate-to-severe OSA, with prior failure to other treatment modalities or with craniofacial abnormalities. The surgical success and cure rates are found to be 86.0% and 43.2%, respectively. Side effects may appear as postsurgical complications such as temporary facial paresthesia and compromised facial esthetics. However, most patients report satisfaction with their postsurgical appearance. Both treatment modalities require experienced clinicians and multidisciplinary approaches in order to efficaciously treat OSA patients. Some researchers do propose possible predictors of treatment success, but clear patient selection criteria and clinical predictive values for treatment success are still needed in both treatment modalities.

Keywords: mandibular advancement treatment; sleep-disordered breathing; treatment outcome.

Conflict of interest statement

Disclosure The authors report no conflicts of interest in this work.

References

    1. Jordan AS, McSharry DG, Malhotra A. Adult obstructive sleep apnoea. Lancet. 2014;383(9918):736–747.
    1. Sonnesen L, Petri N, Kjaer I, Svanholt P. Cervical column morphology in adult patients with obstructive sleep apnoea. Eur J Orthod. 2008;30(5):521–526.
    1. Ngiam J, Balasubramaniam R, Darendeliler MA, Cheng AT, Waters K, Sullivan CE. Clinical guidelines for oral appliance therapy in the treatment of snoring and obstructive sleep apnoea. Aust Dent J. 2013;58(4):408–419.
    1. Greenstone M, Hack M. Obstructive sleep apnoea. BMJ. 2014;348:g3745.
    1. Epstein LJ, Kristo D, Strollo PJ, Jr, et al. Clinical guideline for the evaluation, management and long-term care of obstructive sleep apnea in adults. J Clin Sleep Med. 2009;5(3):263–276.
    1. Sharples LD, Clutterbuck-James AL, Glover MJ, et al. Meta-analysis of randomised controlled trials of oral mandibular advancement devices and continuous positive airway pressure for obstructive sleep apnoeahypopnoea. Sleep Med Rev. 2016;27:108–124.
    1. Spicuzza L, Caruso D, Di MG. Obstructive sleep apnoea syndrome and its management. Ther Adv Chronic Dis. 2015;6(5):273–285.
    1. Gilat H, Vinker S, Buda I, Soudry E, Shani M, Bachar G. Obstructive sleep apnea and cardiovascular comorbidities: a large epidemiologic study. Medicine (Baltimore) 2014;93:e45.
    1. Aurora RN, Punjabi NM. Obstructive sleep apnoea and type 2 diabetes mellitus: a bidirectional association. Lancet Respir Med. 2013;1(4):329–338.
    1. McNicholas WT, Bonsigore MR. Sleep apnoea as an independent risk factor for cardiovascular disease: current evidence, basic mechanisms and research priorities. Eur Respir J. 2007;29:156–178.
    1. Balachandran JS, Patel SR. In the clinic. Obstructive sleep apnea. Ann Intern Med. 2014;161:ITC1–ITC15.
    1. Giarda M, Brucoli M, Arcuri F, Benech R, Braghiroli A, Benech A. Efficacy and safety of maxillomandibular advancement in treatment of obstructive sleep apnoea syndrome. Acta Otorhinolaryngol Ital. 2013;33:43–46.
    1. Zaghi S, Holty JE, Certal V, et al. Maxillomandibular advancement for treatment of obstructive sleep apnea: a meta-analysis. JAMA Otolaryngol Head Neck Surg. 2016;142(1):58–66.
    1. Boyd SB, Walters AS, Waite P, Harding SM, Song Y. Long-term effectiveness and safety of maxillomandibular advancement for treatment of obstructive sleep apnea. J Clin Sleep Med. 2015;11:699–708.
    1. Sutherland K, Vanderveken OM, Tsuda H, et al. Oral appliance treatment for obstructive sleep apnea: an update. J Clin Sleep Med. 2014;10(2):215–227.
    1. Woodson BT. Non-pressure therapies for obstructive sleep apnea: surgery and oral appliances. Respir Care. 2010;55(10):1314–1321.
    1. Sutherland K, Cistulli P. Mandibular advancement splints for the treatment of sleep apnea syndrome. Swiss Med Wkly. 2011;141:w13276.
    1. Marklund M, Verbraecken J, Randerath W. Non-CPAP therapies in obstructive sleep apnoea: mandibular advancement device therapy. Eur Respir J. 2012;39(5):1241–1247.
    1. Svanholt P, Petri N, Wildschiodtz G, Sonnesen L. Influence of cranio-facial and upper spine morphology on mandibular advancement device treatment outcome in patients with obstructive sleep apnoea: a pilot study. Eur J Orthod. 2015;37(4):391–397.
    1. Ramar K, Dort LC, Katz SG, et al. Clinical practice guideline for the treatment of obstructive sleep apnea and snoring with oral appliance therapy: an update for 2015. J Clin Sleep Med. 2015;11(7):773–827.
    1. Petri N, Svanholt P, Solow B, Wildschiodtz G, Winkel P. Mandibular advancement appliance for obstructive sleep apnoea: results of a randomised placebo controlled trial using parallel group design. J Sleep Res. 2008;17(2):221–229.
    1. Knappe SW, Bakke M, Svanholt P, Petersson A, Sonnesen L. Long-term side effects on the temporomandibular joints and oro-facial function in patients with obstructive sleep apnoea treated with a mandibular advancement device. J Oral Rehabil. 2017;44(5):354–362.
    1. Heidsieck DS, de Ruiter MH, de LJ. Management of obstructive sleep apnea in edentulous patients: an overview of the literature. Sleep Breath. 2016;20(1):395–404.
    1. Tripathi A, Gupta A, Sarkar S, Tripathi S, Gupta N. Changes in upper airway volume in edentulous obstructive sleep apnea patients treated with modified mandibular advancement device. J Prosthodont. 2016;25(6):453–458.
    1. Young D, Collop N. Advances in the treatment of obstructive sleep apnea. Curr Treat Options Neurol. 2014;16(8):305.
    1. Aarab G, Lobbezoo F, Hamburger HL, Naeije M. Effects of an oral appliance with different mandibular protrusion positions at a constant vertical dimension on obstructive sleep apnea. Clin Oral Investig. 2010;14(3):339–345.
    1. Serra-Torres S, Bellot-Arcis C, Montiel-Company JM, Marco-Algarra J, Almerich-Silla JM. Effectiveness of mandibular advancement appliances in treating obstructive sleep apnea syndrome: a systematic review. Laryngoscope. 2016;126:507–514.
    1. Tegelberg A, Walker-Engstrom ML, Vestling O, Wilhelmsson B. Two different degrees of mandibular advancement with a dental appliance in treatment of patients with mild to moderate obstructive sleep apnea. Acta Odontol Scand. 2003;61(6):356–362.
    1. Walker-Engstrom ML, Ringqvist I, Vestling O, Wilhelmsson B, Tegelberg A. A prospective randomized study comparing two different degrees of mandibular advancement with a dental appliance in treatment of severe obstructive sleep apnea. Sleep Breath. 2003;7(3):119–130.
    1. Gjerde K, Lehmann S, Berge ME, Johansson AK, Johansson A. Oral appliance treatment in moderate and severe obstructive sleep apnoea patients non-adherent to CPAP. J Oral Rehabil. 2016;43(4):249–258.
    1. Bamagoos AA, Sutherland K, Cistulli PA. Mandibular advancement splints. Sleep Med Clin. 2016;11(3):343–352.
    1. Phillips CL, Grunstein RR, Darendeliler MA, et al. Health outcomes of continuous positive airway pressure versus oral appliance treatment for obstructive sleep apnea: a randomized controlled trial. Am J Respir Crit Care Med. 2013;187:879–887.
    1. Duran-Cantolla J, Crovetto-Martinez R, Alkhraisat MH, et al. Efficacy of mandibular advancement device in the treatment of obstructive sleep apnea syndrome: a randomized controlled crossover clinical trial. Med Oral Patol Oral Cir Bucal. 2015;20(5):e605–e615.
    1. Hoekema A, Doff MH, de Bont LG, et al. Predictors of obstructive sleep apnea-hypopnea treatment outcome. J Dent Res. 2007;86:1181–1186.
    1. Sutherland K, Takaya H, Qian J, Petocz P, Ng AT, Cistulli PA. Oral appliance treatment response and polysomnographic phenotypes of obstructive sleep apnea. J Clin Sleep Med. 2015;11(8):861–868.
    1. Denolf PL, Vanderveken OM, Marklund ME, Braem MJ. The status of cephalometry in the prediction of non-CPAP treatment outcome in obstructive sleep apnea patients. Sleep Med Rev. 2016;27:56–73.
    1. Doff MH, Finnema KJ, Hoekema A, Wijkstra PJ, de Bont LG, Stegenga B. Long-term oral appliance therapy in obstructive sleep apnea syndrome: a controlled study on dental side effects. Clin Oral Investig. 2013;17(2):475–482.
    1. Almeida FR, Lowe AA, Otsuka R, Fastlicht S, Farbood M, Tsuiki S. Long-term sequellae of oral appliance therapy in obstructive sleep apnea patients: part 2. Study-model analysis. Am J Orthod Dentofacial Orthop. 2006;129(2):205–213.
    1. Pliska BT, Nam H, Chen H, Lowe AA, Almeida FR. Obstructive sleep apnea and mandibular advancement splints: occlusal effects and progression of changes associated with a decade of treatment. J Clin Sleep Med. 2014;10(12):1285–1291.
    1. Marklund M, Franklin KA, Persson M. Orthodontic side-effects of mandibular advancement devices during treatment of snoring and sleep apnoea. Eur J Orthod. 2001;23:135–144.
    1. Hammond RJ, Gotsopoulos H, Shen G, Petocz P, Cistulli PA, Darendeliler MA. A follow-up study of dental and skeletal changes associated with mandibular advancement splint use in obstructive sleep apnea. Am J Orthod Dentofacial Orthop. 2007;132(6):806–814.
    1. Bock NC, Ruf S. Dentoskeletal changes in adult Class II division 1 Herbst treatment – how much is left after the retention period? Eur J Orthod. 2012;34(6):747–753.
    1. Bjork A, Helm S. Prediction of the age of maximum puberal growth in body height. Angle Orthod. 1967;37:134–143.
    1. Bakke M, Petersson A, Wiesel M, Svanholt P, Sonnesen L. Bony deviations revealed by cone beam computed tomography of the temporomandibular joint in subjects without ongoing pain. J Oral Facial Pain Headache. 2014;28(4):331–337.
    1. Holty JE, Guilleminault C. Maxillomandibular advancement for the treatment of obstructive sleep apnea: a systematic review and meta-analysis. Sleep Med Rev. 2010;14(5):287–297.
    1. Boyd SB. Management of obstructive sleep apnea by maxillomandibular advancement. Oral Maxillofac Surg Clin North Am. 2009;21(4):447–457.
    1. Garg RK, Afifi AM, Sanchez R, King TW. Obstructive sleep apnea in adults: the role of upper airway and facial skeletal surgery. Plast Reconstr Surg. 2016;138(4):889–898.
    1. Schendel SA, Broujerdi JA, Jacobson RL. Three-dimensional upper-airway changes with maxillomandibular advancement for obstructive sleep apnea treatment. Am J Orthod Dentofacial Orthop. 2014;146(3):385–393.
    1. Butterfield KJ, Marks PL, McLean L, Newton J. Pharyngeal airway morphology in healthy individuals and in obstructive sleep apnea patients treated with maxillomandibular advancement: a comparative study. Oral Surg Oral Med Oral Pathol Oral Radiol. 2015;119(3):285–292.
    1. Rosario HD, Oliveira GM, Freires IA, de Souza MF, Paranhos LR. Efficiency of bimaxillary advancement surgery in increasing the volume of the upper airways: a systematic review of observational studies and meta-analysis. Eur Arch Otorhinolaryngol. 2017;274(1):35–44.
    1. Knudsen TB, Laulund AS, Ingerslev J, Homoe P, Pinholt EM. Improved apnea-hypopnea index and lowest oxygen saturation after maxillomandibular advancement with or without counterclockwise rotation in patients with obstructive sleep apnea: a meta-analysis. J Oral Maxillofac Surg. 2015;73(4):719–726.
    1. Jaspers GW, Booij A, de GJ, de LJ. Long-term results of maxillomandibular advancement surgery in patients with obstructive sleep apnoea syndrome. Br J Oral Maxillofac Surg. 2013;51(3):e37–e39.
    1. Pendlebury ST, Pepin JL, Veale D, Levy P. Natural evolution of moderate sleep apnoea syndrome: significant progression over a mean of 17 months. Thorax. 1997;52(10):872–878.
    1. Ubaldo ED, Greenlee GM, Moore J, Sommers E, Bollen AM. Cephalometric analysis and long-term outcomes of orthognathic surgical treatment for obstructive sleep apnoea. Int J Oral Maxillofac Surg. 2015;44(6):752–759.
    1. Lee SH, Kaban LB, Lahey ET. Skeletal stability of patients undergoing maxillomandibular advancement for treatment of obstructive sleep apnea. J Oral Maxillofac Surg. 2015;73(4):694–700.
    1. Diaz PM, Garcia RG, Gias LN, et al. Time used for orthodontic surgical treatment of dentofacial deformities in white patients. J Oral Maxillofac Surg. 2010;68(1):88–92.
    1. Jarab F, Omar E, Bhayat A, Mansuri S, Ahmed S. Duration of hospital stay following orthognathic surgery at the Jordan University Hospital. J Maxillofac Oral Surg. 2012;11:314–318.
    1. Blumen MB, Buchet I, Meulien P, Hausser HC, Neveu H, Chabolle F. Complications/adverse effects of maxillomandibular advancement for the treatment of OSA in regard to outcome. Otolaryngol Head Neck Surg. 2009;141(5):591–597.
    1. Aarab G, Lobbezoo F, Hamburger HL, Naeije M. Variability in the apnea-hypopnea index and its consequences for diagnosis and therapy evaluation. Respiration. 2009;77(1):32–37.

Source: PubMed

3
Prenumerera