The relationship between frailty, nutritional status, co-morbidity, CT-body composition and systemic inflammation in patients with COVID-19

Josh McGovern, Yassir Al-Azzawi, Olivia Kemp, Peter Moffitt, Conor Richards, Ross D Dolan, Barry J Laird, Donald C McMillan, Donogh Maguire, Josh McGovern, Yassir Al-Azzawi, Olivia Kemp, Peter Moffitt, Conor Richards, Ross D Dolan, Barry J Laird, Donald C McMillan, Donogh Maguire

Abstract

Background: Frailty, determined by the Canadian Study of Health and Aging-Clinical Frailty Scale (CFS), is strongly associated with clinical outcomes including mortality in patients with COVID-19. However, the relationship between frailty and other recognised prognostic factors including age, nutritional status, obesity, sarcopenia and systemic inflammation is poorly understood. Therefore, the aim of this study was to examine the relationship between frailty and other prognostic domains, in patients admitted with COVID-19.

Methods: Patients who presented to our institutions between 1st April 2020-6th July 2020 with confirmed COVID-19 were assessed for inclusion. Data collected included general demographic details, clinicopathological variables, CFS admission assessment, Malnutrition Universal Screening Tool (MUST), CT-BC measurements and markers of systemic inflammation.

Results: 106 patients met the study inclusion criteria. The majority of patients were aged ≥ 70 years (67%), male (53%) and frail (scoring > 3 on the CFS, 72%). The majority of patients were not malnourished (MUST 0, 58%), had ≥ 1 co-morbidity (87%), were sarcopenic (low SMI, 80%) and had systemic inflammation (mGPS ≥ 1, 81%, NLR > 5, 55%). On multivariate binary logistics regression analysis, age (p < 0.01), COPD (p < 0.05) and NLR (p < 0.05) remained independently associated with frailty. On univariate binary logistics regression, NLR (p < 0.05) was significantly associated with 30-day mortality.

Conclusion: Frailty was independently associated with age, co-morbidity, and systemic inflammation. The basis of the relationship between frailty and clinical outcomes in COVID-19 requires further study. Trial registration Registered with clinicaltrials.gov (NCT04484545).

Keywords: Body composition; COVID-19; Elderly; Frailty.

Conflict of interest statement

There is no conflicts of interest to declare.

© 2022. The Author(s).

Figures

Fig. 1
Fig. 1
Flow diagram of included patients with COVID 19 Infection and analysable CT imaging

References

    1. World Health Organization. WHO Director-General’s opening remarks at the media briefing on COVID-19—12 October 2020. 2020. . Accessed 3 Feb 2021.
    1. Rockwood K, Song X, MacKnight C, Bergman H, Hogan DB, McDowell I, et al. A global clinical measure of fitness and frailty in elderly people. CMAJ. 2005;173(5):489–495. doi: 10.1503/cmaj.050051.
    1. Excellence NIfHaC. National Institute for Health and Care Excellence: Clinical Guidelines. COVID-19 rapid guideline: managing suspected or confirmed pneumonia in adults in the community. London: National Institute for Health and Care Excellence (UK) Copyright © NICE 2020. 2020.
    1. Kastora S, Kounidas G, Perrott S, Carter B, Hewitt J, Myint PK. Clinical frailty scale as a point of care prognostic indicator of mortality in COVID-19: a systematic review and meta-analysis. EClinicalMedicine. 2021;36:100896. doi: 10.1016/j.eclinm.2021.100896.
    1. Collaborative GMR. Age and frailty are independently associated with increased COVID-19 mortality and increased care needs in survivors: results of an international multi-centre study. Age Ageing. 2021;50(3):617–630. doi: 10.1093/ageing/afab026.
    1. Maguire D, Richards C, Woods M, Dolan R, Wilson Veitch J, Sim WMJ, et al. The systemic inflammatory response and clinicopathological characteristics in patients admitted to hospital with COVID-19 infection: comparison of 2 consecutive cohorts. PLoS ONE. 2021;16(5):e0251924. doi: 10.1371/journal.pone.0251924.
    1. Maguire D, Woods M, Richards C, Dolan R, Veitch JW, Sim WMJ, et al. Prognostic factors in patients admitted to an urban teaching hospital with COVID-19 infection. J Transl Med. 2020;18(1):354. doi: 10.1186/s12967-020-02524-4.
    1. Owen RK, Conroy SP, Taub N, Jones W, Bryden D, Pareek M, et al. Comparing associations between frailty and mortality in hospitalised older adults with or without COVID-19 infection: a retrospective observational study using electronic health records. Age Ageing. 2021;50(2):307–316. doi: 10.1093/ageing/afaa167.
    1. McGovern J, Dolan R, Richards C, Laird BJ, McMillan DC, Maguire D. Relation between body composition, systemic inflammatory response, and clinical outcomes in patients admitted to an urban teaching hospital with COVID-19. J Nutr. 2021;151(8):2236–2244. doi: 10.1093/jn/nxab142.
    1. Nutrition BAfPaE. Introducing ‘MUST’. 2016. . Accessed 24 May 2021.
    1. Zahorec R. Ratio of neutrophil to lymphocyte counts—rapid and simple parameter of systemic inflammation and stress in critically ill. Bratisl Lek Listy. 2001;102(1):5–14.
    1. McMillan DC, Crozier JE, Canna K, Angerson WJ, McArdle CS. Evaluation of an inflammation-based prognostic score (GPS) in patients undergoing resection for colon and rectal cancer. Int J Colorectal Dis. 2007;22(8):881–886. doi: 10.1007/s00384-006-0259-6.
    1. Feliciano EMC, Kroenke CH, Meyerhardt JA, Prado CM, Bradshaw PT, Kwan ML, et al. Association of systemic inflammation and sarcopenia with survival in nonmetastatic colorectal cancer: results from the C SCANS study. JAMA Oncol. 2017;3(12):e172319. doi: 10.1001/jamaoncol.2017.2319.
    1. Abbass T, Dolan RD, Laird BJ, McMillan DC. The relationship between imaging-based body composition analysis and the systemic inflammatory response in patients with cancer: a systematic review. Cancers. 2019;11(9):1304. doi: 10.3390/cancers11091304.
    1. McSorley ST, Black DH, Horgan PG, McMillan DC. The relationship between tumour stage, systemic inflammation, body composition and survival in patients with colorectal cancer. Clin Nutr. 2018;37(4):1279–1285. doi: 10.1016/j.clnu.2017.05.017.
    1. Martin L, Birdsell L, Macdonald N, Reiman T, Clandinin MT, McCargar LJ, et al. Cancer cachexia in the age of obesity: skeletal muscle depletion is a powerful prognostic factor, independent of body mass index. J Clin Oncol. 2013;31(12):1539–1547. doi: 10.1200/JCO.2012.45.2722.
    1. Ebadi M, Martin L, Ghosh S, Field CJ, Lehner R, Baracos VE, et al. Subcutaneous adiposity is an independent predictor of mortality in cancer patients. Br J Cancer. 2017;117(1):148–155. doi: 10.1038/bjc.2017.149.
    1. Doyle SL, Bennett AM, Donohoe CL, Mongan AM, Howard JM, Lithander FE, et al. Establishing computed tomography-defined visceral fat area thresholds for use in obesity-related cancer research. Nutr Res. 2013;33(3):171–179. doi: 10.1016/j.nutres.2012.12.007.
    1. Hussien H, Nastasa A, Apetrii M, Nistor I, Petrovic M, Covic A. Different aspects of frailty and COVID-19: points to consider in the current pandemic and future ones. BMC Geriatr. 2021;21(1):389. doi: 10.1186/s12877-021-02316-5.
    1. Blomaard LC, van der Linden CMJ, van der Bol JM, Jansen SWM, Polinder-Bos HA, Willems HC, et al. Frailty is associated with in-hospital mortality in older hospitalised COVID-19 patients in the Netherlands: the COVID-OLD study. Age Ageing. 2021;50(3):631–640. doi: 10.1093/ageing/afab018.
    1. Puts MTE, Toubasi S, Andrew MK, Ashe MC, Ploeg J, Atkinson E, et al. Interventions to prevent or reduce the level of frailty in community-dwelling older adults: a scoping review of the literature and international policies. Age Ageing. 2017;46(3):383–392.
    1. Campbell AJ, Buchner DM. Unstable disability and the fluctuations of frailty. Age Ageing. 1997;26(4):315–318. doi: 10.1093/ageing/26.4.315.
    1. Cooper C, Dere W, Evans W, Kanis JA, Rizzoli R, Sayer AA, et al. Frailty and sarcopenia: definitions and outcome parameters. Osteoporos Int. 2012;23(7):1839–1848. doi: 10.1007/s00198-012-1913-1.
    1. Morley JE, Kalantar-Zadeh K, Anker SD. COVID-19: a major cause of cachexia and sarcopenia? J Cachexia Sarcopenia Muscle. 2020;11(4):863–865. doi: 10.1002/jcsm.12589.
    1. Barazzoni R, Bischoff SC, Breda J, Wickramasinghe K, Krznaric Z, Nitzan D, et al. ESPEN expert statements and practical guidance for nutritional management of individuals with SARS-CoV-2 infection. Clin Nutr. 2020;39(6):1631–1638. doi: 10.1016/j.clnu.2020.03.022.
    1. Iwashyna TJ, Ely EW, Smith DM, Langa KM. Long-term cognitive impairment and functional disability among survivors of severe sepsis. JAMA. 2010;304(16):1787–1794. doi: 10.1001/jama.2010.1553.
    1. Clegg A, Young J, Iliffe S, Rikkert MO, Rockwood K. Frailty in elderly people. Lancet. 2013;381(9868):752–762. doi: 10.1016/S0140-6736(12)62167-9.
    1. Rockwood K, Song X, Mitnitski A. Changes in relative fitness and frailty across the adult lifespan: evidence from the Canadian national population health survey. CMAJ. 2011;183(8):E487–E494. doi: 10.1503/cmaj.101271.
    1. Mitnitski A, Rockwood K. The rate of aging: the rate of deficit accumulation does not change over the adult life span. Biogerontology. 2016;17(1):199–204. doi: 10.1007/s10522-015-9583-y.
    1. Hanlon P, Nicholl BI, Jani BD, Lee D, McQueenie R, Mair FS. Frailty and pre-frailty in middle-aged and older adults and its association with multimorbidity and mortality: a prospective analysis of 493 737 UK Biobank participants. Lancet Public Health. 2018;3(7):e323–e332. doi: 10.1016/S2468-2667(18)30091-4.
    1. Gregg EW, Sophiea MK, Weldegiorgis M. Diabetes and COVID-19: population impact 18 months into the pandemic. Diabetes Care. 2021;44(9):1916–1923. doi: 10.2337/dci21-0001.
    1. Peterson E, Lo KB, DeJoy R, Salacup G, Pelayo J, Bhargav R, et al. The relationship between coronary artery disease and clinical outcomes in COVID-19: a single-center retrospective analysis. Coron Artery Dis. 2021;32(5):367–371. doi: 10.1097/MCA.0000000000000934.
    1. Reyes FM, Hache-Marliere M, Karamanis D, Berto CG, Estrada R, Langston M, et al. Assessment of the association of COPD and asthma with in-hospital mortality in patients with COVID-19. A systematic review, meta-analysis, and meta-regression analysis. J Clin Med. 2021;10(10):2087. doi: 10.3390/jcm10102087.
    1. Franceschi C, BonafÈ M, Valensin S, Olivieri F, De Luca M, Ottaviani E, et al. Inflamm-aging: an evolutionary perspective on immunosenescence. Ann NY Acad Sci. 2000;908(1):244–254. doi: 10.1111/j.1749-6632.2000.tb06651.x.
    1. Zanetti M, Marzaro G, De Colle P, Toigo G, Bianchini D, Nastri M, et al. Predictors of short- and long-term mortality among acutely admitted older patients: role of inflammation and frailty. Aging Clin Exp Res. 2021 doi: 10.1007/s40520-021-01926-8.
    1. Yang AP, Liu JP, Tao WQ, Li HM. The diagnostic and predictive role of NLR, d-NLR and PLR in COVID-19 patients. Int Immunopharmacol. 2020;84:106504. doi: 10.1016/j.intimp.2020.106504.
    1. Liu J, Liu Y, Xiang P, Pu L, Xiong H, Li C, et al. Neutrophil-to-lymphocyte ratio predicts critical illness patients with 2019 coronavirus disease in the early stage. J Transl Med. 2020;18(1):206. doi: 10.1186/s12967-020-02374-0.
    1. Flaatten H, Guidet B, Andersen FH, Artigas A, Cecconi M, Boumendil A, et al. Reliability of the clinical frailty scale in very elderly ICU patients: a prospective European study. Ann Intensive Care. 2021;11(1):22. doi: 10.1186/s13613-021-00815-7.
    1. Petermann-Rocha F, Hanlon P, Gray SR, Welsh P, Gill JMR, Foster H, et al. Comparison of two different frailty measurements and risk of hospitalisation or death from COVID-19: findings from UK Biobank. BMC Med. 2020;18(1):355. doi: 10.1186/s12916-020-01822-4.

Source: PubMed

3
Prenumerera