A phase II RCT and economic analysis of three exercise delivery methods in men with prostate cancer on androgen deprivation therapy

Shabbir M H Alibhai, Daniel Santa Mina, Paul Ritvo, Catherine Sabiston, Murray Krahn, George Tomlinson, Andrew Matthew, Roanne Segal, Padraig Warde, Sara Durbano, Meagan O'Neill, Nicole Culos-Reed, Shabbir M H Alibhai, Daniel Santa Mina, Paul Ritvo, Catherine Sabiston, Murray Krahn, George Tomlinson, Andrew Matthew, Roanne Segal, Padraig Warde, Sara Durbano, Meagan O'Neill, Nicole Culos-Reed

Abstract

Background: Androgen deprivation therapy is commonly used to treat prostate cancer, the most common visceral cancer in men. However, various side effects often worsen physical functioning and reduce well-being among men on this treatment. Based on existing evidence, both resistance and aerobic training provide benefits for this population yet adherence rates are often low. The method of exercise delivery (supervised in-center or home-based) may be important, yet few studies have compared different models. Additionally, long-term exercise adherence is critical to achieve sustained benefits but long-term adherence data and predictors of adherence are lacking. The primary aim of this phase II, non-inferiority randomized controlled trial is to determine whether three exercise training delivery models are equivalent in terms of benefits in quality of life and physical fitness in this population. Secondary aims include examination of long-term adherence and cost-effectiveness.

Design: Men diagnosed with prostate cancer, starting or continuing on androgen deprivation therapy for at least 6 months, fluent in English, and living close to one of two experienced Canadian study centers are eligible. Participants complete five assessments over one year, including a fitness assessment and self-report questionnaires. Socio-demographic and clinical data collection occur at baseline, bone mineral density testing at two time points, and blood work is performed at three time points. Participants are randomized in a 1:1:1 fashion to supervised personal training, supervised group training, or home-based smartphone- and health coach-supported training. Each participant receives a detailed exercise manual, including illustrations of exercises and safety precautions. Participants are asked to complete 4 to 5 exercise sessions per week, incorporating aerobic, resistance and flexibility training. Participant intensity levels will be monitored. The intervention duration is 6 months, with 6 months additional follow-up. Outcomes include: body composition, fitness testing, quality of life and fatigue, biological outcomes, and program adherence. Cost information will be obtained using patient diary-based self-report.

Discussion: The goals of this study are to gain a better understanding of health benefits and costs associated with commonly used yet currently not compared exercise delivery models as well as an increased understanding of adherence to exercise.

Trial registration: The trial has been registered at clinicaltrials.gov (Registration # NCT02046837), registered January 20(th), 2014.

Figures

Figure 1
Figure 1
Social ecological framework for understanding exercise determinants.

References

    1. Canadian Cancer Society’s Advisory Committee on Cancer Statistics. Canadian Cancer Society: Canadian Cancer Statistics 2014. Toronto, 2014
    1. Siegel R, Ma J, Zou Z, Jemal A. Cancer statistics, 2014. CA Cancer J Clin. 2014;64(1):9–29. doi: 10.3322/caac.21208.
    1. Shahinian VB, Kuo YF, Freeman JL, Orihuela E, Goodwin JS. Increasing use of gonadotropin-releasing hormone agonists for the treatment of localized prostate carcinoma. Cancer. 2005;103(8):1615–24. doi: 10.1002/cncr.20955.
    1. Cooperberg MR, Grossfeld GD, Lubeck DP, Carroll PR. National practice patterns and time trends in androgen ablation for localized prostate cancer. J Natl Cancer Inst. 2003;95(13):981–9. doi: 10.1093/jnci/95.13.981.
    1. Sharifi N, Gulley JL, Dahut WL. Androgen deprivation therapy for prostate cancer. JAMA. 2005;294(2):238–44. doi: 10.1001/jama.294.2.238.
    1. Alibhai SMH, Breunis H, Timilshina N, Johnston C, Tomlinson G, Tannock I, et al. Impact of androgen-deprivation therapy on physical function and quality of life in men with non-metastatic prostate cancer. J Clin Oncol. 2010;28(34):5038–45. doi: 10.1200/JCO.2010.29.8091.
    1. Alibhai SM, Gogov S, Allibhai Z. Long-term side effects of androgen deprivation therapy in men with non-metastatic prostate cancer: a systematic literature review. Crit Rev Oncol Hematol. 2006;60(3):201–15. doi: 10.1016/j.critrevonc.2006.06.006.
    1. Walker LM, Tran S, Robinson JW. Luteinizing hormone–releasing hormone agonists: a quick reference for prevalence rates of potential adverse effects. Clin Genitourin Canc. 2013;11(4):375–84. doi: 10.1016/j.clgc.2013.05.004.
    1. Baumann FT, Zopf EM, Bloch W. Clinical exercise interventions in prostate cancer patients–a systematic review of randomized controlled trials. Support Care Cancer. 2012;20(2):221–33. doi: 10.1007/s00520-011-1271-0.
    1. Segal RJ, Reid RD, Courneya KS, Malone SC, Parliament MB, Scott CG, et al. Resistance exercise in men receiving androgen deprivation therapy for prostate cancer. J Clin Oncol. 2003;21(9):1653–9. doi: 10.1200/JCO.2003.09.534.
    1. Galvao DA, Nosaka K, Taaffe DR, Spry N, Kristjanson LJ, McGuigan MR, et al. Resistance training and reduction of treatment side effects in prostate cancer patients. Med Sci Sports Exerc. 2006;38(12):2045–52. doi: 10.1249/01.mss.0000233803.48691.8b.
    1. Galvao DA, Taaffe DR, Spry N, Joseph D, Newton RU. Combined resistance and aerobic exercise program reverses muscle loss in men undergoing androgen suppression therapy for prostate cancer without bone metastases: a randomized controlled trial. J Clin Oncol. 2010;28(2):340–7. doi: 10.1200/JCO.2009.23.2488.
    1. Thorsen L, Courneya KS, Stevinson C, Fossa SD. A systematic review of physical activity in prostate cancer survivors: outcomes, prevalence, and determinants. Support Care Cancer. 2008;16(9):987–97. doi: 10.1007/s00520-008-0411-7.
    1. Santa Mina D, Ritvo P, Segal R, Culos-Reed SN, Alibhai SMH. Exercise After Prostate Cancer Diagnosis. In: Saxton JM, Daley A, editors. Exercise and Cancer Survivorship: Impact on Health Outcomes and Quality of Life. New York: Springer; 2010. pp. 113–40.
    1. Keogh JW, MacLeod RD. Body composition, physical fitness, functional performance, quality of life, and fatigue benefits of exercise for prostate cancer patients: a systematic review. J Pain Symptom Manage. 2012;43(1):96–110. doi: 10.1016/j.jpainsymman.2011.03.006.
    1. Gardner JR, Livingston PM, Fraser SF. Effects of exercise on treatment-related adverse effects for patients with prostate cancer receiving androgen-deprivation therapy: a systematic review. J Clin Oncol. 2014;32(4):335–46. doi: 10.1200/JCO.2013.49.5523.
    1. Borst SE. Interventions for sarcopenia and muscle weakness in older people. Age Ageing. 2004;33(6):548–55. doi: 10.1093/ageing/afh201.
    1. Santa Mina D, Ritvo P, Matthew AG, Rampersad A, Stein H, Cheung AM, et al. Group exercise versus personal training for prostate cancer patients: a pilot randomized trial. J Canc Ther. 2012;3(2):146–56. doi: 10.4236/jct.2012.32020.
    1. Hansen PA, Dechet CB, Porucznik CA, LaStayo PC. Comparing eccentric resistance exercise in prostate cancer survivors on and off hormone therapy: a pilot study. Phys Rehabil Med. 2009;1(11):1019–24.
    1. Bourke L, Doll H, Crank H, Daley A, Rosario D, Saxton JM. Lifestyle intervention in men with advanced prostate cancer receiving androgen suppression therapy: a feasibility study. Canc Epidemiol Biomarkers Prev. 2011;20(4):647–57. doi: 10.1158/1055-9965.EPI-10-1143.
    1. Culos-Reed SN, Robinson JL, Lau H, O’Connor K, Keats MR. Benefits of a physical activity intervention for men with prostate cancer. J Sport Exerc Psychol. 2007;29(1):118–27. doi: 10.1123/jsep.29.1.118.
    1. Culos-Reed SN, Robinson JW, Lau H, Stephenson L, Keats M, Norris S, et al. Physical activity for Men receiving androgen deprivation therapy for prostate cancer: benefits from a 16-week intervention. Support Care Cancer. 2010;18(5):591–9. doi: 10.1007/s00520-009-0694-3.
    1. Windsor PM, Nicol KF, Potter J. A randomized, controlled trial of aerobic exercise for treatment-related fatigue in men receiving radical external beam radiotherapy for localized prostate carcinoma. Cancer. 2004;101(3):550–7. doi: 10.1002/cncr.20378.
    1. Canadian Society of Exercise Physiology . Physical Activity Readiness Questionnaire. Ottawa: Canadian Society of Exercise Physiology; 2002.
    1. Galvao DA, Taaffe DR, Spry N, Joseph D, Newton RU. Acute versus chronic exposure to androgen suppression for prostate cancer: impact on the exercise response. J Urol. 2011;186(4):1291–7. doi: 10.1016/j.juro.2011.05.055.
    1. Canadian Society of Exercise Physiology . Physical Activity Training for Health. Ottawa: Health Canada; 2013.
    1. Canadian Society of Exercise Physiology . The Canadian Physical Activity, Fitness & Lifestyle Approach. 3. Ottawa: Health Canada; 2010.
    1. American College of Sports Medicine . ACSM’s Guidelines for Exercise Testing and Prescription. New York: Lippincott Williams and Winkins; 2005.
    1. Strassmann A, Steurer-Stey C, Lana KD, Zoller M, Turk AJ, Suter P, et al. Population-based reference values for the 1-min sit-to-stand test. Int J Publ Health. 2013;58(6):949–53. doi: 10.1007/s00038-013-0504-z.
    1. Bohannon RW. Sit-to-stand test for measuring performance of lower extremity muscles. Percept Mot Skills. 1995;80(1):163–6. doi: 10.2466/pms.1995.80.1.163.
    1. Mathiowetz V, Kashman N, Volland G, Weber K, Dowe M, Rogers S. Grip and pinch strength: normative data for adults. Arch Phys Med Rehabil. 1985;66(2):69–74.
    1. Cella DF, Tulsky DS, Gray G, Sarafian B, Linn E, Bonomi A, et al. The functional assessment of cancer therapy scale: development and validation of the general measure. J Clin Oncol. 1993;11(3):570–9.
    1. Esper P, Mo F, Chodak G, Sinner M, Cella D, Pienta KJ. Measuring quality of life in men with prostate cancer using the functional assessment of cancer therapy-prostate instrument. Urology. 1997;50(6):920–8. doi: 10.1016/S0090-4295(97)00459-7.
    1. Cella D. The functional assessment of cancer therapy-anemia (FACT-an) scale: a new tool for the assessment of outcomes in cancer anemia and fatigue. Semin Hematol. 1997;34(3 Suppl 2):13–9.
    1. Alibhai SM, Duong-Hua M, Sutradhar R, Fleshner NE, Warde P, Cheung AM, et al. Impact of androgen deprivation therapy on cardiovascular disease and diabetes. J Clin Oncol. 2009;27(21):3452–8. doi: 10.1200/JCO.2008.20.0923.
    1. Saylor PJ, Smith MR. Metabolic complications of androgen deprivation therapy for prostate cancer. J Urol. 2009;181(5):1998–2006. doi: 10.1016/j.juro.2009.01.047.
    1. Knowler WC, Barrett-Connor E, Fowler SE, Hamman RF, Lachin JM, Walker EA, et al. Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N Engl J Med. 2002;346(6):393–403. doi: 10.1056/NEJMoa012512.
    1. Kraemer WJ, Ratamess NA. Hormonal responses and adaptations to resistance exercise and training. Sports Med. 2005;35(4):339–61. doi: 10.2165/00007256-200535040-00004.
    1. Segal RJ, Reid RD, Courneya KS, Sigal RJ, Kenny GP, Prud’Homme DG, et al. Randomized controlled trial of resistance or aerobic exercise in men receiving radiation therapy for prostate cancer. J Clin Oncol. 2009;27(3):344–51. doi: 10.1200/JCO.2007.15.4963.
    1. Prince SA, Adamo KB, Hamel ME, Hardt J, Connor Gorber S, Tremblay M. A comparison of direct versus self-report measures for assessing physical activity in adults: a systematic review. Int J Behav Nutr Phys Act. 2008;5:56. doi: 10.1186/1479-5868-5-56.
    1. Canadian Society of Exercise Physiology . Canadian Physical Activity Guidelines. Ottawa: Health Canada; 2011.
    1. Freedson PS, Melanson E, Sirard J. Calibration of the Computer Science and Applications, Inc. accelerometer. Med Sci Sports Exerc. 1998;30(5):777–81. doi: 10.1097/00005768-199805000-00021.
    1. Tudor-Locke C, Craig CL, Aoyagi Y, Bell RC, Croteau KA, De Bourdeaudhuij I, et al. How many steps/day are enough? For older adults and special populations. Int J Behav Nutr Phys Act. 2011;8:80. doi: 10.1186/1479-5868-8-80.
    1. Bronfenbrenner U. Environments in developmental perspective: Theoretical and operational models. In: Friedmand SL, Wachs TD, editors. Measuring Environment Across the Life Span. Washington, D.C: American Psychological Association; 1999. pp. 3–28.
    1. Cerin E, Saelens BE, Sallis JF, Frank LD. Neighborhood Environment Walkability Scale: validity and development of a short form. Med Sci Sports Exerc. 2006;38(9):1682–91. doi: 10.1249/01.mss.0000227639.83607.4d.
    1. Williams GC, Grow VM, Freedman ZR, Ryan RM, Deci EL. Motivational predictors of weight loss and weight-loss maintenance. J Pers Soc Psychol. 1996;70(1):115–26. doi: 10.1037/0022-3514.70.1.115.
    1. Wilson PM, Garcia Bengoechea E. The relatedness to others in physical activity scale: evidence for structural and criterion validity. J Appl Biobehav Res. 2010;15(2):61–87. doi: 10.1111/j.1751-9861.2010.00052.x.
    1. Markland DA, Tobin V. A modification to the behavioural regulation in exercise questionnaire to include an assessment of amotivation. J Sport Exerc Psychol. 2004;26:191–6. doi: 10.1123/jsep.26.2.191.
    1. Brunet J, Sabiston CM. Exploring motivation for physical activity across the adult lifespan. Psychol Sport Exerc. 2011;12:99–105. doi: 10.1016/j.psychsport.2010.09.006.
    1. Courneya KS, Friedenreich CM. Utility of the theory of planned behavior for understanding exercise during breast cancer treatment. Psychooncology. 1999;8(2):112–22. doi: 10.1002/(SICI)1099-1611(199903/04)8:2<112::AID-PON341>;2-L.
    1. Courneya KS, Vallance JK, Culos-Reed SN, McNeely ML, Bell GJ, Mackey JR, et al. The Alberta moving beyond breast cancer (AMBER) cohort study: a prospective study of physical activity and health-related fitness in breast cancer survivors. BMC Cancer. 2012;12:525. doi: 10.1186/1471-2407-12-525.
    1. Borg GA. Psychophysical bases of perceived exertion. Med Sci Sports Exerc. 1982;14(5):377–81. doi: 10.1249/00005768-198205000-00012.
    1. Heyward VH. Advanced Fitness Assessment and Exercise Prescription. 5. Windsor: Human Kinetics Publishers; 2010.
    1. Common Terminology Criteria for Adverse Events (CTCAE) version 4.0. U.S . Department of Health and Human Services, National Institutes of Health, National Cancer Institute. 2009.
    1. Roset M, Badia X, Mayo NE. Sample size calculations in studies using the EuroQol 5D. Qual Life Res. 1999;8(6):539–49. doi: 10.1023/A:1008973731515.
    1. Krahn M, Bremner KE, Tomlinson G, Ritvo P, Irvine J, Naglie G. Responsiveness of disease-specific and generic utility instruments in prostate cancer patients. Qual Life Res. 2007;16(3):509–22. doi: 10.1007/s11136-006-9132-x.
    1. Krahn M, Ritvo P, Irvine J, Tomlinson G, Bremner KE, Bezjak A, et al. Patient and community preferences for outcomes in prostate cancer: implications for clinical policy. Med Care. 2003;41(1):153–64. doi: 10.1097/00005650-200301000-00017.
    1. Thabane L, Ma J, Chu R, Cheng J, Ismaila A, Rios LP, et al. A tutorial on pilot studies: the what, why and how. BMC Med Res Methodol. 2010;10:1. doi: 10.1186/1471-2288-10-1.
    1. Hertzog MA. Considerations in determining sample size for pilot studies. Res Nurs Health. 2008;31(2):180–91. doi: 10.1002/nur.20247.
    1. Sim J, Lewis M. The size of a pilot study for a clinical trial should be calculated in relation to considerations of precision and efficiency. J Clin Epidemiol. 2012;65(3):301–8. doi: 10.1016/j.jclinepi.2011.07.011.
    1. Demark-Wahnefried W, Clipp EC, Lipkus IM, Lobach D, Snyder DC, Sloane R, et al. Main outcomes of the FRESH START trial: a sequentially tailored, diet and exercise mailed print intervention among breast and prostate cancer survivors. J Clin Oncol. 2007;25(19):2709–18. doi: 10.1200/JCO.2007.10.7094.
    1. Richman EL, Kenfield SA, Stampfer MJ, Paciorek A, Carroll PR, Chan JM. Physical activity after diagnosis and risk of prostate cancer progression: data from the cancer of the prostate strategic urologic research endeavor. Cancer Res. 2011;71(11):3889–95. doi: 10.1158/0008-5472.CAN-10-3932.

Source: PubMed

3
Prenumerera