Multidetector CT in children: current concepts and dose reduction strategies

Rutger A J Nievelstein, Ingrid M van Dam, Aart J van der Molen, Rutger A J Nievelstein, Ingrid M van Dam, Aart J van der Molen

Abstract

The recent technical development of multidetector CT (MDCT) has contributed to a substantial increase in its diagnostic applications and accuracy in children. A major drawback of MDCT is the use of ionising radiation with the risk of inducing secondary cancer. Therefore, justification and optimisation of paediatric MDCT is of great importance in order to minimise these risks ("as low as reasonably achievable" principle). This review will focus on all technical and non-technical aspects relevant for paediatric MDCT optimisation and includes guidelines for radiation dose level-based CT protocols.

Figures

Fig. 1
Fig. 1
Illustration of the fixation of a baby using a vacuum pillow (reproduced with permission from the parents)
Fig. 2
Fig. 2
Illustration of the combined ATCM technique for CT of the abdomen. The scanogram shows the calculated variation of the mA per body part, in the frontal (green) as well as the lateral (yellow) projection (Sure Exposure 3D, Toshiba Medical Systems, Otawara, Japan)
Fig. 3
Fig. 3
Overbeaming. The X-ray bundle consists of the umbra (dark grey) and penumbra (middle grey), caused by the diverging bundle. In MDCT the penumbra is excluded from detection by the detector array in order to achieve a uniform illumination of the detectors (overbeaming)
Fig. 4
Fig. 4
Overranging. In MDCT one section width is automatically added to the planned scan length, so image scan length is slightly longer. Furthermore, at the beginning and end of the imaged scan length an extra rotation is added, necessary for image reconstruction and resulting in a longer exposed scan length. The definition of overranging is either the difference between user planned and total exposed scan length (def 1) or the difference between total imaged and exposed scan length (def 2) (reproduced with permission from [65])
Fig. 5
Fig. 5
Illustration of the increase in DLP (%, vertical axis) in relation to the bundle width (mm, horizontal axis) caused by overbeaming (OB) and overranging (OR) in MDCT. a For long scan lengths the DLP slightly changes for a bundle width >10 mm. b For short scan lengths (around 10 cm, children) a bundle width of 10–20 mm is the most optimal in terms of radiation dose (adapted from [66], with permission)

References

    1. Slovis TL. The ALARA (as low as reasonably achievable) concept in pediatric CT intelligent dose reduction. ALARA conference proceedings. Pediatr Radiol. 2002;32:217–218. doi: 10.1007/s00247-002-0669-8.
    1. Brenner DJ, Hall EJ. Computed tomography—An increasing source of radiation exposure. N Engl J Med. 2007;357:2277–2284. doi: 10.1056/NEJMra072149.
    1. Hall EJ, Brenner DJ. Cancer risks from diagnostic radiology. BJR. 2008;81:362–378. doi: 10.1259/bjr/01948454.
    1. Smith-Bindman R, Lipson J, Marcus R, et al. Radiation dose associated with common computed tomography examinations and the associated lifetime attributable risk of cancer. Arch Intern Med. 2009;169:2078–2086. doi: 10.1001/archinternmed.2009.427.
    1. Berrington de González A, Mahesh M, Kim KP, et al. Projected cancer risks from computed tomography scans performed in the United States in 2007. Arch Intern Med. 2009;169:2071–2077. doi: 10.1001/archinternmed.2009.440.
    1. ICRP-103 The 2007 Recommendations of the International Commission on Radiological Protection. ICRP publication 103. Ann ICRP. 2007;37:1–332.
    1. Semelka RC, Armao DM, Elias J, et al. Imaging strategies to reduce the risk of radiation in CT studies, including selective substitution with MRI. J Magn Reson Imaging. 2007;25:900–909. doi: 10.1002/jmri.20895.
    1. Mezrich R. Are CT scans carcinogenic? J Am Coll Radiol. 2008;5:691–693. doi: 10.1016/j.jacr.2007.12.011.
    1. Frush DP. Radiation, CT, and Children: the simple answer is... It’s complicated. Radiology. 2009;252:4–6. doi: 10.1148/radiol.2521090661.
    1. Little MP, Wakeford R, Tawn EJ, et al. Risks associated with low doses and low dose rates of ionizing radiation: why linearity may be (almost) the best we can do. Radiology. 2009;251:6–12. doi: 10.1148/radiol.2511081686.
    1. Tubiana M, Feinendegen LE, Yang C, et al. The linear no-threshold relationship is inconsistent with radiation biologic and experimental data. Radiology. 2009;251:13–22. doi: 10.1148/radiol.2511080671.
    1. Arch ME, Frush DP. Pediatric body MDCT: a 5-year follow-up survey of scanning parameters used by pediatric radiologists. AJR. 2008;191:611–617. doi: 10.2214/AJR.07.2989.
    1. Brody AS, Frush DP, Huda W, et al. Radiation risk to children from computed tomography. Pediatrics. 2007;120:677–682. doi: 10.1542/peds.2007-1910.
    1. Hillman BJ. Radiation exposure and imaging utilization. J Am Coll Radiol. 2008;5:689–690. doi: 10.1016/j.jacr.2008.03.006.
    1. Robbins E. Radiation risks from imaging studies in children with cancer. Pediatr Blood Cancer. 2008;51:453–457. doi: 10.1002/pbc.21599.
    1. Cohen MD. Pediatric CT radiation dose: how low can we go? AJR. 2009;192:1292–1303. doi: 10.2214/AJR.08.2174.
    1. Redberg RF. Cancer risks and radiation exposure from computed tomograpic scans: how can we be sure that the benefit outweighs the risks? Arch Intern Med. 2009;169:2049–2050. doi: 10.1001/archinternmed.2009.453.
    1. Boland GW. The CT dose and utilization controversy: the radiologist’s response. J Am Coll Radiol. 2008;5:696–698. doi: 10.1016/j.jacr.2008.01.015.
    1. Fenton SJ, Hansen KW, Meyers RL, et al. CT scan and the pediatric trauma patient: are we overdoing it? J Pediatr Surg. 2004;39:1877–1881. doi: 10.1016/j.jpedsurg.2004.08.007.
    1. Donnelly LF. Reducing radiation dose associated with pediatric CT by decreasing unnecessary examinations. AJR. 2005;184:655–657.
    1. Oikarinen H, Meriläinen S, Pääkkö E, et al. Unjustified CT examinations in young patients. Eur Radiol. 2009;19:1161–1165. doi: 10.1007/s00330-008-1256-7.
    1. Shiralkar S, RennieA SM, et al. Doctor’s knowledge of radiation exposure: questionnaire study. BMJ. 2003;327:371–372. doi: 10.1136/bmj.327.7411.371.
    1. Lee CI, Haims AH, Monico EP, et al. Diagnostic CT scans: assessment of patient, physician, and radiologist awareness of radiation dose and possible risks. Radiology. 2004;231:393–398. doi: 10.1148/radiol.2312030767.
    1. Thomas KE, Parnell-Parmley JE, Haidar S, et al. Assessment of radiation dose awareness among pediatricians. Pediatr Radiol. 2006;36:823–832. doi: 10.1007/s00247-006-0170-x.
    1. Galanski M, Nagel HD, Stamm G (2006) Pediatric CT exposure practice in the Federal Republic of Germany. Results of a nation-wide survey in 2005/06. Medizinische Hochschule Hannover.
    1. Riccabona M. Thoracic sonography in infancy and childhood. Radiologe. 2003;43:1075–1089. doi: 10.1007/s00117-003-0989-1.
    1. Riccabona M. Ultrasound of the chest in children (mediastinum excluded) Eur Radiol. 2008;18:390–399. doi: 10.1007/s00330-007-0754-3.
    1. Darge K, Jaramillo D, Siegel MJ. Whole-body MRI in children, Current status and future applications. Eur J Radiol. 2008;68:289–298. doi: 10.1016/j.ejrad.2008.05.018.
    1. American College of Radiology ACR (2008) ACR appropriateness criteria, October 2008 version.
    1. The Royal College of Radiologists (2009) Making the best use of clinical radiology services, Referral guidelines. 6th edn (MBUR6)
    1. Taghon TA, Bryan YF, Kurth CD. Pediatric radiology sedation and anesthesia. Int Anesthesiol Clin. 2006;44:64–79. doi: 10.1097/01.aia.0000197087.24782.6a.
    1. Shankar VR. Sedating children for radiological procedures: an intensivist’s perspective. Pediatr Radiol. 2008;38:S213–S217. doi: 10.1007/s00247-008-0778-0.
    1. Frush DP. MDCT in children: scan techniques and contrast issues. In: Kalra MK, Sanjay S, Rubin GD, editors. Multidetector CT: from protocols to practice. 1. Heidelberg: Springer Verlag; 2008. pp. 331–351.
    1. Siegel MJ. Practical CT techniques. In: Siegel MJ, editor. Pediatric body CT. 2. Philadelphia: Lippincott Williams & Wilkins; 2008. pp. 1–32.
    1. Hebert JJ, Taylor AJ, Winter TC, et al. Low-attenuation oral GI contrast agents in abdominal-pelvic computed tomography. Abdom Imaging. 2006;31:48–53. doi: 10.1007/s00261-005-0350-4.
    1. Koo CW, Shah-Patel LR, Baer JW, et al. Cost-effectiveness and patient tolerance of low-attenuation oral contrast material: milk versus VoLumen. AJR. 2008;190:1307–1313. doi: 10.2214/AJR.07.3193.
    1. Schwab SA, Uder M, Anders K, et al. Peripheral intravenous power injection of iodinated contrast media through 22G and 20G cannulas: can high flow rates be achieved safely? A clinical feasibility study. RoFo. 2009;181:355–361.
    1. Herts BR, O’Malley CM, Wirth SL, et al. Power injection of contrast media using central venous catheters: feasibility, safety, and efficacy. AJR. 2001;176:447–453.
    1. Gebauer B, Teichgräber UK, Hothan T, et al. Contrast media pressure injection using a portal catheter system—results of an in vitro study. Rofo. 2005;177:1417–1423.
    1. Rigsby CK, Gasber E, Seshadri R, et al. Safety and efficacy of pressure-limited power injection of iodinated contrast medium through central lines in children. AJR. 2007;188:726–732. doi: 10.2214/AJR.06.0104.
    1. Zamos DT, Todd TM, Patton HA, et al. Injection rate threshold for triple-lumen central venous catheter. An in vitro study. Acad Radiol. 2007;14:574–578. doi: 10.1016/j.acra.2007.01.026.
    1. Fleishmann D, Kamaya A. Optimal vascular and parenchymal contrast enhancement: the current state of the art. Radiol Clin North Am. 2009;47:13–26. doi: 10.1016/j.rcl.2008.10.009.
    1. Bae KT, Heiken JP. Scan and contrast administration principles of MDCT. Eur Radiol. 2005;15:E46–59. doi: 10.1007/s00330-005-2815-9.
    1. Bae KT, Shah AJ, Shang SS, et al. Aortic and hepatic contrast enhancement with abdominal 64-MDCT in pediatric patients: effect of body weight and iodine dose. AJR. 2008;191:1589–1594. doi: 10.2214/AJR.07.3576.
    1. Fricke BL, Donnelly LF, Frush DP, et al. In-plane bismuth breast shields for pediatric CT: effects on radiation dose and image quality using experimental and clinical data. AJR. 2003;180:407–411.
    1. Coursey C, Frush DP, Yoshizumi T, et al. Pediatric chest MDCT using tube current modulation: effect on radiation dose with breast shielding. AJR. 2008;190:W54–W61. doi: 10.2214/AJR.07.2017.
    1. Vollmar SV, Kalender WA. Reduction of dose to the female breast in thoracic CT: a comparison of standard-protocol, bismuth-shielded, partial and tube-current-modulated CT examinations. Eur Radiol. 2008;18:1674–1682. doi: 10.1007/s00330-008-0934-9.
    1. Geleijns J, Salvadó Artells M, Veldkamp WJH, et al. Quantitative assessment of selective in-plane shielding of tissues in computed tomography through evaluation of absorbed dose and image quality. Eur Radiol. 2006;16:2334–2340. doi: 10.1007/s00330-006-0217-2.
    1. Leswick DA, Hunt MM, Webster ST, et al. Thyroid shields versus z-axis automatic tube current modulation for dose reduction at neck CT. Radiology. 2008;249:572–580. doi: 10.1148/radiol.2492071430.
    1. Vock P, Wolf R. Dose optimization and reduction in CT of children (chapter 15) In: Tack D, Gevenois PA, editors. Radiation dose from adult and pediatric multidetector computed tomography. Berlin: Springer; 2007. pp. 223–236.
    1. Singh S, Kalra MK, Moore MA, et al. Dose reduction and compliance with pediatric CT protocols adapted to patient size, clinical indication, and number of prior studies. Radiology. 2009;252:200–208. doi: 10.1148/radiol.2521081554.
    1. Verdun FR, Gutierrez D, Schnyder PF, et al. CT dose optimization when changing to CT multi-detector row technology. Curr Probl Diagn Radiol. 2007;36:176–184. doi: 10.1067/j.cpradiol.2007.04.001.
    1. Da Costa e Silva EJ, Da Silva GA. Eliminating unenhanced CT when evaluating abdominal neoplasms in children. AJR. 2007;189:1211–1214. doi: 10.2214/AJR.07.2154.
    1. Sodickson A, Baeyens PF, Andriole KP, et al. Recurrent CT, cumulative radiation exposure, and associated radiation-induced cancer risks from CT of adults. Radiology. 2009;251:175–184. doi: 10.1148/radiol.2511081296.
    1. Udayansankar UK, Braithwaite K, Arvaniti M, et al. Low-dose nonenhanced head CT protocol for follow-up evaluation of children with ventriculoperitoneal shunt: reduction of radiation and effect on image quality. AJNR. 2008;29:802–806. doi: 10.3174/ajnr.A0923.
    1. Shah R, Gupta AK, Rehani MN, et al. Effect of reduction of tube current on reader confidence in paediatric computed tomography. Clin Radiol. 2005;60:224–231. doi: 10.1016/j.crad.2004.08.011.
    1. Frush DP, Soden B, Frush KS, et al. Improved pediatric multidetector body CT using a size-based color-coded format. AJR. 2002;178:721–726.
    1. Kotre CJ, Willis SP. A method for the systematic selection of technique factors in paediatric CT. BJR. 2003;76:51–56. doi: 10.1259/bjr/53215511.
    1. Paterson A, Frush DP. Dose reduction in paediatric MDCT: general principles. Clin Radiol. 2007;62:507–517. doi: 10.1016/j.crad.2006.12.004.
    1. Lee CH, Goo JM, Lee HJ, et al. Radiation dose modulation techniques in the multidetector CT era: From basics to practice. Radiographics. 2008;28:1451–1459. doi: 10.1148/rg.285075075.
    1. McCollough CH, Primak AN, Braun N, et al. Strategies for reducing radiation dose in CT. Radiol Clin North Am. 2009;47:27–40. doi: 10.1016/j.rcl.2008.10.006.
    1. Smith AB, Dillon WP, Lau BC, et al. Radiation dose reduction strategy for CT protocols: successful implementation in neuroradiology section. Radiology. 2008;247:499–506. doi: 10.1148/radiol.2472071054.
    1. Kalra MK, Maher MM, Toth TL, et al. Techniques and applications of automatic tube current modulation for CT. Radiology. 2004;233:649–657. doi: 10.1148/radiol.2333031150.
    1. Kalender WA, Buchenau S, Deak P, et al. Technical approaches to the optimisation of CT. Phys Med. 2008;24:71–79.
    1. Van der Molen AJ, Geleijns J. Overranging in multisection CT: quantification and relative contribution to dose—comparison of four 16-section CT-scanners. Radiology. 2007;242:208–216. doi: 10.1148/radiol.2421051350.
    1. Nagel HD. CT parameters that influence the radiation dose. In: Tack D, Gevenois PA, editors. Radiation dose from adult and pediatric multidetector computed tomography. Berlin: Springer; 2007. pp. 51–79.
    1. Deak PD, Lagner O, Lell M, et al. Effects of adaptive section collimation on patient radiation dose in multisection spiral CT. Radiology. 2009;252:140–147. doi: 10.1148/radiol.2522081845.
    1. Thomas KE, Wang B. Age-specific effective doses for pediatric MSCT examinations at a large children’s hospital using DLP conversion coefficients: a simple estimation method. Pediatr Radiol. 2008;38:645–656. doi: 10.1007/s00247-008-0794-0.
    1. Fujii K, Aoyama T, Koyama S, et al. Comparative evaluation of organ and effective doses of paediatric patients with those for adults in chest and abdominal CT examinations. BJR. 2007;80:657–667. doi: 10.1259/bjr/97260522.
    1. Huda W, Vance A. Patient radiation doses from adult and pediatric CT. AJR. 2007;188:540–546. doi: 10.2214/AJR.06.0101.
    1. Shrimpton PC, Hillier MC, Lewis MA, et al. National survey of doses from CT in the UK: 2003. Br J Radiol. 2006;79:968–980. doi: 10.1259/bjr/93277434.
    1. Verdun FR, Gutierrez D, Vader JP, et al. CT radiation dose in children: a survey to establish age-based diagnostic reference levels in Switzerland. Eur Radiol. 2008;18:1980–1986. doi: 10.1007/s00330-008-0963-4.
    1. Brisse HJ, Aubert B. CT exposure from pediatric MDCT: results from the 2007–2008 SFIPP/ISRN survey. J Radiol. 2009;90:207–215. doi: 10.1016/S0221-0363(09)72471-0.

Source: PubMed

3
Prenumerera