A Data Integration Multi-Omics Approach to Study Calorie Restriction-Induced Changes in Insulin Sensitivity

Maria Carlota Dao, Nataliya Sokolovska, Rémi Brazeilles, Séverine Affeldt, Véronique Pelloux, Edi Prifti, Julien Chilloux, Eric O Verger, Brandon D Kayser, Judith Aron-Wisnewsky, Farid Ichou, Estelle Pujos-Guillot, Lesley Hoyles, Catherine Juste, Joël Doré, Marc-Emmanuel Dumas, Salwa W Rizkalla, Bridget A Holmes, Jean-Daniel Zucker, Karine Clément, MICRO-Obes Consortium, Aurélie Cotillard, Sean P Kennedy, Nicolas Pons, Emmanuelle Le Chatelier, Mathieu Almeida, Benoit Quinquis, Nathalie Galleron, Jean-Michel Batto, Pierre Renault, Stanislav Dusko Ehrlich, Hervé Blottière, Marion Leclerc, Tomas de Wouters, Patricia Lepage, Maria Carlota Dao, Nataliya Sokolovska, Rémi Brazeilles, Séverine Affeldt, Véronique Pelloux, Edi Prifti, Julien Chilloux, Eric O Verger, Brandon D Kayser, Judith Aron-Wisnewsky, Farid Ichou, Estelle Pujos-Guillot, Lesley Hoyles, Catherine Juste, Joël Doré, Marc-Emmanuel Dumas, Salwa W Rizkalla, Bridget A Holmes, Jean-Daniel Zucker, Karine Clément, MICRO-Obes Consortium, Aurélie Cotillard, Sean P Kennedy, Nicolas Pons, Emmanuelle Le Chatelier, Mathieu Almeida, Benoit Quinquis, Nathalie Galleron, Jean-Michel Batto, Pierre Renault, Stanislav Dusko Ehrlich, Hervé Blottière, Marion Leclerc, Tomas de Wouters, Patricia Lepage

Abstract

Background: The mechanisms responsible for calorie restriction (CR)-induced improvement in insulin sensitivity (IS) have not been fully elucidated. Greater insight can be achieved through deep biological phenotyping of subjects undergoing CR, and integration of big data. Materials and Methods: An integrative approach was applied to investigate associations between change in IS and factors from host, microbiota, and lifestyle after a 6-week CR period in 27 overweight or obese adults (ClinicalTrials.gov: NCT01314690). Partial least squares regression was used to determine associations of change (week 6 - baseline) between IS markers and lifestyle factors (diet and physical activity), subcutaneous adipose tissue (sAT) gene expression, metabolomics of serum, urine and feces, and gut microbiota composition. ScaleNet, a network learning approach based on spectral consensus strategy (SCS, developed by us) was used for reconstruction of biological networks. Results: A spectrum of variables from lifestyle factors (10 nutrients), gut microbiota (10 metagenomics species), and host multi-omics (metabolic features: 84 from serum, 73 from urine, and 131 from feces; and 257 sAT gene probes) most associated with IS were identified. Biological network reconstruction using SCS, highlighted links between changes in IS, serum branched chain amino acids, sAT genes involved in endoplasmic reticulum stress and ubiquitination, and gut metagenomic species (MGS). Linear regression analysis to model how changes of select variables over the CR period contribute to changes in IS, showed greatest contributions from gut MGS and fiber intake. Conclusion: This work has enhanced previous knowledge on links between host glucose homeostasis, lifestyle factors and the gut microbiota, and has identified potential biomarkers that may be used in future studies to predict and improve individual response to weight-loss interventions. Furthermore, this is the first study showing integration of the wide range of data presented herein, identifying 115 variables of interest with respect to IS from the initial input, consisting of 9,986 variables. Clinical Trial Registration: clinicaltrials.gov (NCT01314690).

Keywords: data integration; insulin sensitivity; lifestyle factors; microbiota; omics.

Figures

Figure 1
Figure 1
Analysis pipeline for data integration. (A) Groups of variables from host, gut microbiota, and lifestyle were considered as input for this analysis. Specifically, the inputs were changes (week 6 – baseline) in the following blocks of variables: clinical parameters (N = 45), including 10 markers of IS/resistance (), lifestyle factors (food groups, N = 26, nutrients N = 34, and physical activity, N = 3), MGS (N = 741, i.e., with more than 700 genes), fecal metabolic features (N = 835), urine metabolic features (N = 562), serum metabolic features (N = 180), and sAT gene expression (N = 7,560 ILMN probes). (B) Two blocks of variables at a time were analyzed using PLSR with canonical mode (MixOmics R package). We have analyzed changes in versus changes in through , and between and . Association coefficient threshold = | 0.7| was selected for analysis with and , and | 0.75| for analysis with , , and . An example of a PLSR network between blocks and is shown. (C) The associations between and host, microbiota, or lifestyle were interpreted. (D) From the PLSR output, the features most strongly associated with improvement in IS after CR were selected (top 20% variables from each PLSR). (E) Visualization of selected features in network reconstruction using SCS (ScaleNet, developed by our group). In hypothetical network shown in E, red nodes: microbiota; blue nodes: host; green nodes: lifestyle factors. Arrows refer to dependency directionality.
Figure 2
Figure 2
Association between changes in IS and factors in host, microbiota, and lifestyle. (A,B) Superimposed PLSR networks associated with change in insulin sensitivity (ΔINS. SEN.), where nodes are arranged by (A) betweenness centrality and (B) variable type. The green edges correspond to positive correlations of change and the red edges correspond to negative correlations of change. (C) Summary of variables from host, microbiota, and lifestyle factors associated with ΔINS. SEN. Association coefficient threshold = [0.7] for lifestyle factors, and | 0.75| for metabolomics and sAT gene expression. NA, not annotated; BCAAs, branched chain amino acids; AAAs, aromatic amino acids; AAs, amino acids; MGS, metagenomic species. No association with change in physical activity or food groups was found above the selected threshold.
Figure 3
Figure 3
Connection between change in IS, BCAAs and other factors from host, lifestyle, and microbiota. (A) ScaleNet network reconstruction showing how changes in variables most strongly associated with improvements in IS are associated with each other. The green edges correspond to positive correlations of change and the red edges correspond to negative correlations of change. (B) Change from baseline to week 6 in select variables from network (highlighted in orange ellipse on the network in A). When significant, adjusted P-values (BH correction) from Wilcoxon Signed Rank test are shown. (C) Linear regression model, where each section of the pie chart shows the relative contribution of change in selected variables (grouped by class) to change in revised QUICKI and HOMA-B. Variables included in the model were those found in the main cluster of the network in part A (except serum metabolic features annotated as glucose). MGS, metagenomic species; metab., metabolic features; DDRGK1, DDRGK domain containing 1 (also known as Dashurin).

References

    1. Affeldt S., Sokolovska N., Prifti E., Zucker J.-D. (2016). Spectral consensus strategy for accurate reconstruction of large biological networks. BMC Bioinformatics 17:1308. 10.1186/s12859-016-1308-y
    1. Blaise B. J., Shintu L., Elena B., Emsley L., Dumas M.-E., Toulhoat P. (2009). Statistical recoupling prior to significance testing in nuclear magnetic resonance based metabonomics. Anal. Chem. 81 6242–6251. 10.1021/ac9007754
    1. Bouché C., Rizkalla S. W., Luo J., Vidal H., Veronese A., Pacher N., et al. (2002). Five-week, low-glycemic index diet decreases total fat mass and improves plasma lipid profile in moderately overweight nondiabetic men. Diabetes Care 25 822–828. 10.2337/diacare.25.5.822
    1. Capel F., Klimcáková E., Viguerie N., Roussel B., Vítková M., Kováciková M., et al. (2009). Macrophages and adipocytes in human obesity: adipose tissue gene expression and insulin sensitivity during calorie restriction and weight stabilization. Diabetes 58 1558–1567. 10.2337/db09-0033
    1. Chen C., Grennan K., Badner J., Zhang D., Gershon E., Jin L., et al. (2011). Removing batch effects in analysis of expression microarray data: an evaluation of six batch adjustment methods. PLoS One 6:e17238. 10.1371/journal.pone.0017238
    1. Clément K., Viguerie N., Poitou C., Carette C., Pelloux V., Curat C. A., et al. (2004). Weight loss regulates inflammation-related genes in white adipose tissue of obese subjects. FASEB J. 18 1657–1669. 10.1096/fj.04-2204com
    1. Cotillard A., Kennedy S. P., Kong L. C., Prifti E., Pons N., Le Chatelier E., et al. (2013). Dietary intervention impact on gut microbial gene richness. Nature 500 585–588. 10.1038/nature12480
    1. Dao M. C., Everard A., Aron-Wisnewsky J., Sokolovska N., Prifti E., Verger E. O., et al. (2015). Akkermansia muciniphilaand improved metabolic health during a dietary intervention in obesity: relationship with gut microbiome richness and ecology. Gut 65 426–436. 10.1136/gutjnl-2014-308778
    1. Dao M. C., Everard A., Clément K., Cani P. D. (2016). Losing weight for a better health: role for the gut microbiota. Clin. Nutr. Exp. 6 39–58. 10.1016/j.yclnex.2015.12.001
    1. Després J. P., Lemieux I., Prud’homme D. (2001). Treatment of obesity: need to focus on high risk abdominally obese patients. BMJ 322 716–720. 10.1136/bmj.322.7288.716
    1. Dona A. C., Jiménez B., Schäfer H., Humpfer E., Spraul M., Lewis M. R., et al. (2014). Precision high-throughput proton NMR spectroscopy of human urine, serum, and plasma for large-scale metabolic phenotyping. Anal. Chem. 86 9887–9894. 10.1021/ac5025039
    1. Dona A. C., Kyriakides M., Scott F., Shephard E. A., Varshavi D., Veselkov K., et al. (2016). A guide to the identification of metabolites in NMR-based metabonomics/metabolomics experiments. Comput. Struct. Biotechnol. J. 14 135–153. 10.1016/j.csbj.2016.02.005
    1. Dumas M.-E., Barton R. H., Toye A., Cloarec O., Blancher C., Rothwell A., et al. (2006). Metabolic profiling reveals a contribution of gut microbiota to fatty liver phenotype in insulin-resistant mice. Proc. Natl. Acad. Sci. U.S.A. 103 12511–12516. 10.1073/pnas.0601056103
    1. Elliott P., Posma J. M., Chan Q., Garcia-Perez I., Wijeyesekera A., Bictash M., et al. (2015). Urinary metabolic signatures of human adiposity. Sci. Transl. Med. 7:285ra62. 10.1126/scitranslmed.aaa5680
    1. Esposito Vinzi V., Chin W. W., Henseler J., Wang H. (2010). Handbook of Partial Least Squares-Concepts. Available at: [accessed November 21 2016].
    1. Fetissov S. O. (2017). Role of the gut microbiota in host appetite control: bacterial growth to animal feeding behaviour. Nat. Rev. Endocrinol. 13 11–25. 10.1038/nrendo.2016.150
    1. Forslund K., Hildebrand F., Nielsen T., Falony G., Le Chatelier E., Sunagawa S., et al. (2015). Disentangling type 2 diabetes and metformin treatment signatures in the human gut microbiota. Nature 528 262–266. 10.1038/nature15766
    1. Gagnon-Bartsch J. A., Speed T. P. (2012). Using control genes to correct for unwanted variation in microarray data. Biostatistics 13 539–552. 10.1093/biostatistics/kxr034
    1. Gao X., Pujos-Guillot E., Martin J.-F., Galan P., Juste C., Jia W., et al. (2009). Metabolite analysis of human fecal water by gas chromatography/mass spectrometry with ethyl chloroformate derivatization. Anal. Biochem. 393 163–175. 10.1016/j.ab.2009.06.036
    1. Genser L., Aguanno D., Soula H. A., Dong L., Trystram L., Assmann K., et al. (2018). Increased jejunal permeability in human obesity is revealed by a lipid challenge and is linked to inflammation and type 2 diabetes. J. Pathol. 246 217–230. 10.1002/path.5134
    1. Geurts L., Neyrinck A. M., Delzenne N. M., Knauf C., Cani P. D. (2014). Gut microbiota controls adipose tissue expansion, gut barrier and glucose metabolism: novel insights into molecular targets and interventions using prebiotics. Benef. Microbes 5 3–17. 10.3920/BM2012.0065
    1. Hastie T., Tibshirani R., Friedman J. (2009). The Elements of Statistical Learning - Data Mining, Inference. Available at: [accessed November 21 2016].
    1. Herman M. A., She P., Peroni O. D., Lynch C. J., Kahn B. B. (2010). Adipose tissue branched chain amino acid (BCAA) metabolism modulates circulating BCAA levels. J. Biol. Chem. 285 11348–11356. 10.1074/jbc.M109.075184
    1. Herrgård M. J., Swainston N., Dobson P., Dunn W. B., Arga K. Y., Arvas M., et al. (2008). A consensus yeast metabolic network reconstruction obtained from a community approach to systems biology. Nat. Biotechnol. 26 1155–1160. 10.1038/nbt1492
    1. Karlsson F. H., Tremaroli V., Nookaew I., Bergström G., Behre C. J., Fagerberg B., et al. (2013). Gut metagenome in European women with normal, impaired and diabetic glucose control. Nature 498 99–103. 10.1038/nature12198
    1. Khan M. T., Nieuwdorp M., Bäckhed F. (2014). Microbial modulation of insulin sensitivity. Cell Metab. 20 753–760. 10.1016/j.cmet.2014.07.006
    1. Kidd B. A., Peters L. A., Schadt E. E., Dudley J. T. (2014). Unifying immunology with informatics and multiscale biology. Nat. Immunol. 15 118–127. 10.1038/ni.2787
    1. Kong L. C., Holmes B. A., Cotillard A., Habi-Rachedi F., Brazeilles R., Gougis S., et al. (2014). Dietary patterns differently associate with inflammation and gut microbiota in overweight and obese subjects. PLoS One 9:e109434. 10.1371/journal.pone.0109434
    1. Kong L. C., Wuillemin P.-H., Bastard J.-P., Sokolovska N., Gougis S., Fellahi S., et al. (2013). Insulin resistance and inflammation predict kinetic body weight changes in response to dietary weight loss and maintenance in overweight and obese subjects by using a Bayesian network approach. Am. J. Clin. Nutr. 98 1385–1394. 10.3945/ajcn.113.058099
    1. Kussmann M., Morine M. J., Hager J., Sonderegger B., Kaput J. (2013). Perspective: a systems approach to diabetes research. Front. Genet. 4:205 10.3389/fgene.2013.00205
    1. Laferrère B., Reilly D., Arias S., Swerdlow N., Gorroochurn P., Bawa B., et al. (2011). Differential metabolic impact of gastric bypass surgery versus dietary intervention in obese diabetic subjects despite identical weight loss. Sci. Transl. Med. 3:80re2. 10.1126/scitranslmed.3002043
    1. Le Chatelier E., Nielsen T., Qin J., Prifti E., Hildebrand F., Falony G., et al. (2013). Richness of human gut microbiome correlates with metabolic markers. Nature 500 541–546. 10.1038/nature12506
    1. Leek J. T., Scharpf R. B., Bravo H. C., Simcha D., Langmead B., Johnson W. E., et al. (2010). Tackling the widespread and critical impact of batch effects in high-throughput data. Nat. Rev. Genet. 11 733–739. 10.1038/nrg2825
    1. Lemaire K., Moura R. F., Granvik M., Igoillo-Esteve M., Hohmeier H. E., Hendrickx N., et al. (2011). Ubiquitin fold modifier 1 (UFM1) and its target UFBP1 protect pancreatic beta cells from ER stress-induced apoptosis. PLoS One 6:e18517. 10.1371/journal.pone.0018517
    1. Levy J. C., Matthews D. R., Hermans M. P. (1998). Correct homeostasis model assessment (HOMA) evaluation uses the computer program. Diabetes Care 21 2191–2192. 10.2337/diacare.21.12.2191
    1. Mozaffarian D. (2016). Dietary and policy priorities for cardiovascular disease, diabetes, and obesity: a comprehensive review. Circulation 133 187–225. 10.1161/CIRCULATIONAHA.115.018585
    1. Munukka E., Pekkala S., Wiklund P., Rasool O., Borra R., Kong L., et al. (2014). Gut-adipose tissue axis in hepatic fat accumulation in humans. J. Hepatol. 61 132–138. 10.1016/j.jhep.2014.02.020
    1. Muoio D. M., Noland R. C., Kovalik J.-P., Seiler S. E., Davies M. N., DeBalsi K. L., et al. (2012). Muscle-specific deletion of carnitine acetyltransferase compromises glucose tolerance and metabolic flexibility. Cell Metab. 15 764–777. 10.1016/j.cmet.2012.04.005
    1. Mutch D. M., Clément K. (2006). Unraveling the genetics of human obesity. PLoS Genet 2:e188. 10.1371/journal.pgen.0020188
    1. Newgard C. B., An J., Bain J. R., Muehlbauer M. J., Stevens R. D., Lien L. F., et al. (2009). A branched-chain amino acid-related metabolic signature that differentiates obese and lean humans and contributes to insulin resistance. Cell Metab. 9 311–326. 10.1016/j.cmet.2009.02.002
    1. Pallister T., Jackson M. A., Martin T. C., Zierer J., Jennings A., Mohney R. P., et al. (2017). Hippurate as a metabolomic marker of gut microbiome diversity: modulation by diet and relationship to metabolic syndrome. Sci. Rep. 7:13670. 10.1038/s41598-017-13722-4
    1. Parker H. S., Leek J. T., Favorov A. V., Considine M., Xia X., Chavan S., et al. (2014). Preserving biological heterogeneity with a permuted surrogate variable analysis for genomics batch correction. Bioinforma. Oxf. Engl. 30 2757–2763. 10.1093/bioinformatics/btu375
    1. Pedersen H. K., Gudmundsdottir V., Nielsen H. B., Hyotylainen T., Nielsen T., Jensen B. A. H., et al. (2016). Human gut microbes impact host serum metabolome and insulin sensitivity. Nature 535 376–381. 10.1038/nature18646
    1. Piening B. D., Zhou W., Contrepois K., Röst H., Gu Urban G. J., Mishra T., et al. (2018). Integrative personal omics profiles during periods of weight gain and loss. Cell Syst. 6 157.e8–170.e8. 10.1016/j.cels.2017.12.013
    1. Plovier H., Everard A., Druart C., Depommier C., Van Hul M., Geurts L., et al. (2017). A purified membrane protein from Akkermansia muciniphila or the pasteurized bacterium improves metabolism in obese and diabetic mice. Nat. Med. 23 107–113. 10.1038/nm.4236
    1. Prifti E., Zucker J.-D., Clement K., Henegar C. (2008). FunNet: an integrative tool for exploring transcriptional interactions. Bioinforma. Oxf. Engl. 24 2636–2638. 10.1093/bioinformatics/btn492
    1. Qin J., Li Y., Cai Z., Li S., Zhu J., Zhang F., et al. (2012). A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature 490 55–60. 10.1038/nature11450
    1. Rizkalla S. W., Prifti E., Cotillard A., Pelloux V., Rouault C., Allouche R., et al. (2012). Differential effects of macronutrient content in 2 energy-restricted diets on cardiovascular risk factors and adipose tissue cell size in moderately obese individuals: a randomized controlled trial. Am. J. Clin. Nutr. 95 49–63. 10.3945/ajcn.111.017277
    1. Roberts L. D., Koulman A., Griffin J. L. (2014). Towards metabolic biomarkers of insulin resistance and type 2 diabetes: progress from the metabolome. Lancet Diabetes Endocrinol. 2 65–75. 10.1016/S2213-8587(13)70143-8
    1. Ruggenenti P., Cattaneo D., Loriga G., Ledda F., Motterlini N., Gherardi G., et al. (2009). Ameliorating hypertension and insulin resistance in subjects at increased cardiovascular risk: effects of acetyl-L-carnitine therapy. Hypertens 54 567–574. 10.1161/HYPERTENSIONAHA.109.132522
    1. Schooneman M. G., Napolitano A., Houten S. M., Ambler G. K., Murgatroyd P. R., Miller S. R., et al. (2016). Assessment of plasma acylcarnitines before and after weight loss in obese subjects. Arch. Biochem. Biophys. 606 73–80. 10.1016/j.abb.2016.07.013
    1. Schooneman M. G., Vaz F. M., Houten S. M., Soeters M. R. (2013). Acylcarnitines: reflecting or inflicting insulin resistance? Diabetes 62 1–8. 10.2337/db12-0466
    1. Shannon P., Markiel A., Ozier O., Baliga N. S., Wang J. T., Ramage D., et al. (2003). Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 13 2498–2504. 10.1101/gr.1239303
    1. Smith C. A., Want E. J., O’Maille G., Abagyan R., Siuzdak G. (2006). XCMS: processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification. Anal. Chem. 78 779–787. 10.1021/ac051437y
    1. Sokol H., Pigneur B., Watterlot L., Lakhdari O., Bermúdez-Humarán L. G., Gratadoux J.-J., et al. (2008). Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients. Proc. Natl. Acad. Sci. U.S.A. 105 16731–16736. 10.1073/pnas.0804812105
    1. Speakman J. R., Mitchell S. E. (2011). Caloric restriction. Mol. Aspects Med. 32 159–221. 10.1016/j.mam.2011.07.001
    1. Sumner L. W., Amberg A., Barrett D., Beale M. H., Beger R., Daykin C. A., et al. (2007). Proposed minimum reporting standards for chemical analysis chemical analysis working group (CAWG) metabolomics standards initiative (MSI). Metabolomics 3 211–221. 10.1007/s11306-007-0082-2
    1. Tremaroli V., Bäckhed F. (2012). Functional interactions between the gut microbiota and host metabolism. Nature 489 242–249. 10.1038/nature11552
    1. Viguerie N., Poitou C., Cancello R., Stich V., Clément K., Langin D. (2005). Transcriptomics applied to obesity and caloric restriction. Biochimie 87 117–123. 10.1016/j.biochi.2004.12.011
    1. Wang Y., Wang Z., Wang Y., Li F., Jia J., Song X., et al. (2018). The gut-microglia connection: implications for central nervous system diseases. Front. Immunol. 9:2325. 10.3389/fimmu.2018.02325
    1. Wu H., Tremaroli V., Bäckhed F. (2015). Linking microbiota to human diseases: a systems biology perspective. Trends Endocrinol. Metab. 26 758–770. 10.1016/j.tem.2015.09.011
    1. Xi P., Ding D., Zhou J., Wang M., Cong Y.-S. (2013). DDRGK1 regulates NF-κB activity by modulating IκBα stability. PLoS One 8:e64231. 10.1371/journal.pone.0064231

Source: PubMed

3
Prenumerera