Demonstration of central conduction time and neuroplastic changes after cervical lordosis rehabilitation in asymptomatic subjects: a randomized, placebo-controlled trial

Ibrahim M Moustafa, Aliaa A Diab, Fatma Hegazy, Deed E Harrison, Ibrahim M Moustafa, Aliaa A Diab, Fatma Hegazy, Deed E Harrison

Abstract

A randomized controlled study was conducted to evaluate the effect of rehabilitation of the cervical sagittal configuration on sensorimotor integration and central conduction time in an asymptomatic population. Eighty (32 female) participants with radiographic cervical hypolordosis and anterior head translation posture were randomly assigned to either a control or an experimental group. The experimental group received the Denneroll cervical traction while the control group received a placebo treatment. Interventions were applied 3 × per week for 10 weeks. Outcome measures included radiographic measured anterior head translation distance, cervical lordosis (posterior bodies of C2-C7), central somatosensory conduction time (latency) (N13-N20), and amplitudes of potentials for spinal N13, brainstem P14, parietal N20 and P27, and frontal N30. Outcomes were obtained at: baseline, after 10 weeks of intervention, and at 3 months follow up. After 10 weeks and 3-months, between-group analyses revealed statistically significant differences between the groups for the following measured variables: lordosis C2-C7, anterior head translation, amplitudes of spinal N13, brainstem P14, parietal N20 and P27, frontal N30 potentials (P < 0.001), and conduction time N13-N20 (P = 0.004). Significant correlation between the sagittal alignment and measured variables were found (P < 0.005). These findings indicate restoration of cervical sagittal alignment has a direct influence on the central conduction time in an asymptomatic population.

Conflict of interest statement

DEH is the CEO of a company that is licensed to sell the Denneroll orthotics to spine health care providers/physicians in the USA. DEH lectures in post graduate courses for continuing education credit for Chiropractic physicians and Physical therapists. IMM, AAD, and FH all have nothing to declare.

© 2021. The Author(s).

Figures

Figure 1
Figure 1
On the far left, the Denneroll orthotic is shown with a mid-cervical spine placement. In the middle, the placebo as a rolled cervical hydrocollator towel is shown placed in the mid-cervical spine. On the far right, a closeup of the placebo treatment is shown for the control group as a cervical hydro-collator towel. Copyright CBP Seminars, Inc. All rights reserved, reprinted with permission, and informed consent from all persons depicted was obtained.
Figure 2
Figure 2
A diagram of patients’ retention and randomization throughout the study.
Figure 3
Figure 3
A representative example of spinal, cortical and sub-cortical findings at three intervals of measurement: baseline or pre-treatment, following 10-weeks of treatment, and 3-month follow-up.
Figure 4
Figure 4
A representative example of central conduction time (N13–N20) at three intervals of measurement: baseline or pre-treatment, following 10-weeks of treatment, and 3-month follow-up. Time is shown in ms.
Figure 5
Figure 5
A statistically significant, multiple regression model to predict central conduction N13–N20 from cervical lordosis (absolute rotation angle or ARA C2–C7) and anterior head translation (AHT) was identified for the intervention group as no such relationship existed for the control/placebo group. Left: the 10-week versus pre-treatment (P < 0.001). On the right: the 3-month follow-up versus pre-treatment (P < 0.001). Note as AHT reduces towards 0 mm and lordosis ARA C2–C7 becomes more lordotic, N13–N20 becomes faster in time.

References

    1. GBD 2015 Disease and Injury Incidence and Prevalence Collaborators. Global, regional, and national incidence, prevalence, and years lived with disability for 310 diseases and injuries, 1990–2015: A systematic analysis for the Global Burden of Disease Study 2015. Lancet. 388(10053), 1545–1602 (2016).
    1. Guzman J, et al. A new conceptual model of neck pain: linking onset, course, and care: the Bone and Joint Decade 2000–2010 Task Force on Neck Pain and Its Associated Disorders. Spine. 2008;33(4 Suppl):S14–S23. doi: 10.1097/BRS.0b013e3181643efb.
    1. Fredin K, Loras H. Manual therapy, exercise therapy or combined treatment in the management of adult neck pain—A systematic review and meta-analysis. Musculoskelet. Sci. Pract. 2017;31:62–71. doi: 10.1016/j.msksp.2017.07.005.
    1. Mata Diz JB, de Souza JRLM, Leopoldino AAO, Oliveira VC. Exercise, especially combined stretching and strengthening exercise, reduces myofascial pain: A systematic review. J. Physiother. 2017;63:17–22. doi: 10.1016/j.jphys.2016.11.008.
    1. Oakley, P. A., Moustafa, I. M. & Harrison, D. E. Restoration of Cervical and Lumbar Lordosis: CBP® Methods Overview. Dec 30, 2019. In: Spinal Deformities in Adoescents, Adults and Older Adults. Josette Bettany-Saltikov J. (ed.) [Online First], IntechOpen. 10.5772/intechopen.90713. Available from: .
    1. Ling FP, Chevillotte T, Leglise A, Thompson W, Bouthors C, Le Huec JC. Which parameters are relevant in sagittal balance analysis of the cervical spine? A literature review. Eur. Spine J. 2018;27(Suppl 1):8–15. doi: 10.1007/s00586-018-5462-y.
    1. Scheer JK, Tang JA, Smith JS, Acosta FL, Jr, Protopsaltis TS, Blondel B, Bess S, Shaffrey CI, Deviren V, Lafage V, Schwab F, Ames CP, International Spine Study Group Cervical spine alignment, sagittal deformity, and clinical implications: A review. J. Neurosurg. Spine. 2013;19(2):141–59. doi: 10.3171/2013.4.SPINE12838.
    1. Ames CP, Blondel B, Scheer JK, Schwab FJ, Le Huec JC, Massicotte EM, Patel AA, Traynelis VC, Kim HJ, Shaffrey CI, Smith JS, Lafage V. Cervical radiographical alignment: Comprehensive assessment techniques and potential importance in cervical myelopathy. Spine. 2013;38(22 Suppl 1):S149–S160. doi: 10.1097/BRS.0b013e3182a7f449.
    1. Harrison DD, Harrison DE, Janik TJ, Cailliet R, Ferrantelli JR, Haas JW, Holland B. Modeling of the sagittal cervical spine as a method to discriminate hypolordosis: results of elliptical and circular modeling in 72 asymptomatic subjects, 52 acute neck pain subjects, and 70 chronic neck pain subjects. Spine. 2004;29(22):2485–2492. doi: 10.1097/01.brs.0000144449.90741.7c.
    1. McAviney J, Schulz D, Bock R, et al. Determining the relationship between cervical lordosis and neck complaints. J. Manipulative Physiol. Ther. 2005;28:187–193. doi: 10.1016/j.jmpt.2005.02.015.
    1. Seong HY, Lee MK, Jeon SR, Roh SW, Rhim SC, Park JH. Prognostic factor analysis for management of chronic neck pain: Can we predict the severity of neck pain with lateral cervical curvature? J. Korean Neurosurg. Soc. 2017;60(4):456–464. doi: 10.3340/jkns.2015.0910.003.
    1. Han K, Lu C, Li J, Xiong GZ, Wang B, Lv GH, Deng YW. Surgical treatment of cervical kyphosis. Eur. Spine J. 2011;20(4):523–536. doi: 10.1007/s00586-010-1602-8.
    1. Nagasawa A, Sakakibara T, Takahashi A. Roentgenographic findings of the cervical spine in tension-type headache. Headache. 1993;33:90–95. doi: 10.1111/j.1526-4610.1993.hed3302090.x.
    1. Vernon H, Steiman I, Hagino C. Cervicogenic dysfunction in muscle contraction headache and migraine: A descriptive study. J. Manipulative Physiol. Ther. 1992;15:418–429.
    1. Ferracini GN, Chaves TC, Dach F, Bevilaqua-Grossi D, Fernández-de-Las-Peñas C, Speciali JG. Analysis of the cranio-cervical curvatures in subjects with migraine with and without neck pain. Physiotherapy. 2017;103(4):392–399. doi: 10.1016/j.physio.2017.03.004.
    1. Buell TJ, Buchholz AL, Quinn JC, Shaffrey CI, Smith JS. Importance of sagittal alignment of the cervical spine in the management of degenerative cervical myelopathy. Neurosurg. Clin. N. Am. 2018;29(1):69–82. doi: 10.1016/j.nec.2017.09.004.
    1. Shamji MF, Ames CP, Smith JS, Rhee JM, Chapman JR, Fehlings MG. Myelopathy and spinal deformity: Relevance of spinal alignment in planning surgical intervention for degenerative cervical myelopathy. Spine. 2013;38(22 Suppl 1):S147–S148. doi: 10.1097/BRS.0b013e3182a7f521.
    1. Mahmoud NF, Hassan KA, Abdelmajeed SF, Moustafa IM, Silva AG. The relationship between forward head posture and neck pain: A systematic review and meta-analysis. Curr. Rev. Musculoskelet. Med. 2019;12(4):562–577. doi: 10.1007/s12178-019-09594-y.
    1. Moustafa IM, Youssef A, Ahbouch A, Tamim M, Harrison DE. Is forward head posture relevant to autonomic nervous system function and cervical sensorimotor control? Cross sectional study. Gait Posture. 2020;77:29–35. doi: 10.1016/j.gaitpost.2020.01.004.
    1. Moustafa IM, Youssef ASA, Ahbouch A, Harrison DE. Demonstration of improved autonomic nervous system function and cervical sensorimotor control after cervical lordosis rehabilitation: A randomized controlled trial. J. Athl. Train. 2021;56(4):427–436. doi: 10.4085/1062-6050-0481.19.
    1. Kleim JA, Jones TA. Principles of experience-dependent neural plasticity: Implications for rehabilitation after brain damage. J. Speech Lang. Hear. Res. 2008;51(1):S225. doi: 10.1044/1092-4388(2008/018).
    1. Pascual-Leone A, Freitas C, Oberman L, Horvath JC, Halko M, Eldaief M, Rotenberg A. Characterizing brain cortical plasticity and network dynamics across the age-span in health and disease with TMS-EEG and TMS-fMRI. Brain Topogr. 2011;24(3–4):302–315. doi: 10.1007/s10548-011-0196-8.
    1. Sanes JN, Donoghue JP. Plasticity and primary motor cortex. Annu. Rev. Neurosci. 2000;23(1):393–415. doi: 10.1146/annurev.neuro.23.1.393.
    1. Flor H. The modification of cortical reorganization and chronic pain by sensory feedback. Appl. Psychophysiol. Biofeedback. 2002;27(3):215–227. doi: 10.1023/A:1016204029162.
    1. Mercier C, Léonard G. Interactions between pain and the motor cortex: Insights from research on phantom limb pain and complex regional pain syndrome. Physiother. Canada. 2011;63(3):305–314. doi: 10.3138/ptc.2010-08p.
    1. Bank PJM, Peper CE, Marinus J, Beek PJ, van Hilten JJ. Motor consequences of experimentally induced limb pain: A systematic review. Eur. J. Pain. 2013;17(2):145–157. doi: 10.1002/j.1532-2149.2012.00186.x.
    1. Bowering KJ, O’Connell NE, Tabor A, Catley MJ, Leake HB, Moseley GL, Stanton TR. The effects of graded motor imagery and its components on chronic pain: A systematic review and meta-analysis. J. Pain. 2013;14(1):3–13. doi: 10.1016/j.jpain.2012.09.007.
    1. Moseley LG. Graded motor imagery is effective for long-standing complex regional pain syndrome: A randomised controlled trial. Pain. 2004;108(1):192–198. doi: 10.1016/j.pain.2004.01.006.
    1. Daligadu J, Haavik H, Yielder PC, Baarbe J, Murphy B. Alterations in cortical and cerebellar motor processing in subclinical neck pain patients following spinal manipulation. J. Manipulative Physiol. Ther. 2013;36(8):527–537. doi: 10.1016/j.jmpt.2013.08.003.
    1. Haavik-Taylor H, Murphy B. Cervical spine manipulation alters sensorimotor integration: A somatosensory evoked potential study. Clin. Neurophysiol. 2007;118(2):391–402. doi: 10.1016/j.clinph.2006.09.014.
    1. Taylor HH, Murphy B. Altered sensorimotor integration with cervical spine manipulation. J. Manipulative Physiol. Ther. 2008;31(2):115–126. doi: 10.1016/j.jmpt.2007.12.011.
    1. Taylor HH, Murphy B. Altered central integration of dual somatosensory input after cervical spine manipulation. J. Manipulative Physiol. Ther. 2010;33(3):178–188. doi: 10.1016/j.jmpt.2010.01.005.
    1. Harrison DD, Janik TJ, Troyanovich SJ, Holland B. Comparisons of lordotic cervical spine curvatures to a theoretical ideal model of the static sagittal cervical spine. Spine. 1996;21(6):667–75. doi: 10.1097/00007632-199603150-00002.
    1. Harrison DE, Harrison DD, Cailliet R, Troyanovich SJ, Janik TJ, H. B. Cobb method or Harrison posterior tangent method: Which to choose for lateral cervical radiographic analysis. Spine. 2000;25(16):2072–8. doi: 10.1097/00007632-200008150-00011.
    1. Moustafa IM, Diab AA, Taha S, Harrison DE. Addition of a sagittal cervical posture corrective orthotic device to a multimodal rehabilitation program improves short- and long-term outcomes in patients with discogenic cervical radiculopathy. Arch. Phys. Med. Rehabil. 2016;97:2034–2044. doi: 10.1016/j.apmr.2016.07.022.
    1. Moustafa IM, Diab AA, Harrison DE. The effect of normalizing the sagittal cervical configuration on dizziness, neck pain, and cervicocephalic kinesthetic sensibility: A 1-year randomized controlled study. Eur. J. Phys. Rehabil. Med. 2017;53:57–71. doi: 10.23736/S1973-9087.16.04179-4.
    1. Moustafa IM, Diab AA, Hegazy F, Harrison DE. Does improvement towards a normal cervical sagittal configuration aid in the management of cervical myofascial pain syndrome: A 1-year randomized controlled trial. BMC Musculoskelet. Disord. 2018;19(1):396. doi: 10.1186/s12891-018-2317-y.
    1. Tinazzi M, Priori A, Bertolasi L, Frasson E, Mauguière F, Fiaschi A. Abnormal central integration of a dual somatosensory input in dystonia. Evidence for sensory overflow. Brain: A J. Neurol. 2000;123:42–50. doi: 10.1093/brain/123.1.42.
    1. Tinazzi M, Fiaschi A, Rosso T, Faccioli F, Grosslercher J. Neuroplastic changes related to pain occur at multiple levels of the human somatosensory system: A somatosensory-evoked potentials study in patients with cervical radicular pain. J. Neurosci. 2000;20(24):9277–9283. doi: 10.1523/JNEUROSCI.20-24-09277.2000.
    1. Desmedt JE, Cheron G. Prevertebral (oesophageal) recording of subcortical somatosensory evoked potentials in man: The spinal P13 component and the dual nature of the spinal generators. Electroencephalogr. Clin. Neurophysiol. 1981;52(4):257–275. doi: 10.1016/0013-4694(81)90055-9.
    1. Allison T, McCarthy G, Wood CC, Jones SJ. Potentials evoked in human and monkey cerebral cortex by stimulation of the median nerve. A review of scalp and intracranial recordings. Brain A J. Neurol. 1991;114:2465–503. doi: 10.1093/brain/114.6.2465.
    1. Mauguière F, Desmedt JE, Courjon J. Astereognosis and dissociated loss of frontal or parietal components of somatosensory evoked potentials in hemispheric lesions. Detailed correlations with clinical signs and computerized tomographic scanning. Brain A J. Neurol. 1983;106:271–311. doi: 10.1093/brain/106.2.271.
    1. Mochizuki H, Yagi K, Tsuruta K, Taniguchi A, Ishii N, Shiomi K, Nakazato M. Prolonged central sensory conduction time in patients with chronic arsenic exposure. J. Neurol. Sci. 2016;361:39–42. doi: 10.1016/j.jns.2015.12.020.
    1. Bouwes A, Doesborg PGG, Laman DM, Koelman JHTM, Imanse JG, Tromp SC, Horn J. Hypothermia after CPR prolongs conduction times of somatosensory evoked potentials. Neurocrit. Care. 2013;19(1):25–30. doi: 10.1007/s12028-013-9856-8.
    1. Parker JL, Dostrovsky JO. Cortical involvement in the induction, but not expression, of thalamic plasticity. J. Neurosci. Off. J. Soc. Neurosci. 1999;19(19):8623–8629. doi: 10.1523/JNEUROSCI.19-19-08623.1999.
    1. Florence SL, Hackett TA, Strata F. Thalamic and cortical contributions to neural plasticity after limb amputation. J. Neurophysiol. 2000;83(5):3154–3159. doi: 10.1152/jn.2000.83.5.3154.
    1. Harrison DDE, Harrison DDE, Janik TJ, William Jones E, Cailliet R, Normand M. Comparison of axial and flexural stresses in lordosis and three buckled configurations of the cervical spine. Clin. Biomech. (Bristol, Avon) 2001;16(4):276–284. doi: 10.1016/S0268-0033(01)00006-7.
    1. Harrison DE, Jones EW, Janik TJ, Harrison DD. Evaluation of axial and flexural stresses in the vertebral body cortex and trabecular bone in lordosis and two sagittal cervical translation configurations with an elliptical shell model. J. Manipulative Physiol. Ther. 2002;25(6):391–401. doi: 10.1067/mmt.2002.126128.
    1. Harrison DDE, Cailliet R, Harrison DDE, Troyanovich SJ, Harrison SO. A review of biomechanics of the central nervous system—part II: Spinal cord strains from postural loads. J. Manipulative Physiol. Ther. 1999;22(5):322–332. doi: 10.1016/S0161-4754(99)70065-5.
    1. Breig, A. Adverse Mechanical Tension in the Central Nervous System: An Analysis of Cause and Effect: Relief by Functional Neurosurgery. Almqvist & Wiksell International (1978)
    1. Brinjikji W, Luetmer PH, Comstock B, et al. Systematic literature review of imaging features of spinal degeneration in asymptomatic populations. AJNR Am. J. Neuroradiol. 2015;36(4):811–816. doi: 10.3174/ajnr.A4173.
    1. Brinjikji W, Diehn FE, Jarvik JG, et al. MRI findings of disc degeneration are more prevalent in adults with low back pain than in asymptomatic controls: A systematic review and meta-analysis. AJNR Am. J. Neuroradiol. 2015;36(12):2394–2399. doi: 10.3174/ajnr.A4498.
    1. Colloca CJ, Keller TS, Moor RJ, Gunzburg R, Harrison DE. Effects of disc degeneration on neurophysiological responses during dorsoventral mechanical excitation of the ovine lumbar spine. J. Electromyogr. Kinesiol. 2008;18:829–837. doi: 10.1016/j.jelekin.2007.02.017.
    1. Miyazaki M, Hymanson HJ, Morishita Y, He W, Zhang H, Wu G, Wang JC. Kinematic analysis of the relationship between sagittal alignment and disc degeneration in the cervical spine. Spine. 2008;33(23):E870–E876. doi: 10.1097/BRS.0b013e3181839733.
    1. Takasaki H, Hall T, Kaneko S, Ikemoto Y, Jull G. A radiographic analysis of the influence of initial neck posture on cervical segmental movement at end-range extension in asymptomatic subjects. Man. Ther. 2011;16(1):74–79. doi: 10.1016/j.math.2010.07.005.
    1. Baker PF, Ladds M, Rubinson KA. Measurement of the flow properties of isolated axoplasm in a defined chemical environment [proceedings] J. Physiol. 1977;269(1):10P–11P.
    1. McCormick PC, Stein BM. Functional anatomy of the spinal cord and related structures. Neurosurg. Clin. N. Am. 1990;1(3):469–489. doi: 10.1016/S1042-3680(18)30786-1.
    1. Lundborg G. Intraneural microcirculation. Orthop. Clin. North Am. 1988;19(1):1–12. doi: 10.1016/S0030-5898(20)30326-6.
    1. Naito M, Owen JH, Bridwell KH, Sugioka Y. Effects of distraction on physiologic integrity of the spinal cord, spinal cord blood flow, and clinical status. Spine. 1992;17(10):1154–1158. doi: 10.1097/00007632-199210000-00005.
    1. Bulut MD, Alpayci M, Senkoy E, Bora A, Yazmalar L, Yavuz A, Gulsen. Decreased vertebral artery hemodynamics in patients with loss of cervical lordosis. Med. Sci. Monit. 2016;15(22):495–500. doi: 10.12659/MSM.897500.
    1. Katz EA, Katz SB, Fedorchuk CA, Lightstone DF, Banach CJ, Podoll JD. Increase in cerebral blood flow indicated by increased cerebral arterial area and pixel intensity on brain magnetic resonance angiogram following correction of cervical lordosis. Brain Circul. 2019;5:19. doi: 10.4103/bc.bc_25_18.
    1. Tasaki I. A macromolecular approach to excitation phenomena: Mechanical and thermal changes in nerve during excitation. Physiol. Chem. Phys. Med. NMR. 1988;20(4):251–268.
    1. Heimburg T, Jackson AD. On soliton propagation in biomembranes and nerves. Proc. Natl. Acad. Sci. USA. 2015;102(28):9790–9795. doi: 10.1073/pnas.0503823102.
    1. Johnson AS, Winlow W. The soliton and the action potential Primary elements underlying sentience. Front. Physiol. 2018;9:779. doi: 10.3389/fphys.2018.00779.
    1. Harrison DE, Harrison DD, Janik TJ, Holland B, Siskin L. Slight head extension: Does it reverse the cervical curve? Euro Spine J. 2001;10:149–153. doi: 10.1007/s005860000228.
    1. Harrison DE, Harrison DD, Betz J, Colloca CJ, Janik TJ, Holland B. Increasing the cervical lordosis with seated combined extension-compression and transverse load cervical traction with cervical manipulation: Non-randomized clinical control trial. J Manipulative Physiol Ther. 2003;26(3):139–151. doi: 10.1016/S0161-4754(02)54106-3.
    1. Carlino E, Vase L. Can knowledge of placebo and nocebo mechanisms help improve randomized clinical trials? Int. Rev. Neurobiol. 2018;138:329–357. doi: 10.1016/bs.irn.2018.01.012).

Source: PubMed

3
Prenumerera