The effects of deep neck muscle-specific training versus general exercises on deep neck muscle thickness, pain and disability in patients with chronic non-specific neck pain: protocol for a randomized clinical trial (RCT)

Pegah Kashfi, Noureddin Karimi, Anneli Peolsson, Leila Rahnama, Pegah Kashfi, Noureddin Karimi, Anneli Peolsson, Leila Rahnama

Abstract

Background: Altered thickness, cross-sectional area and activity of deep neck muscles have frequently been reported in patients with chronic non-specific neck pain (CNNP). It is claimed that these muscles do not recover spontaneously. These muscles provide a considerable amount of cervical stability. Therefore, various therapeutic exercises have been recommended to recover from resulting complications. However, most exercise protocols do not target deep neck muscles directly. Thus, this might be a reason for long-lasting complications. Accordingly, the purpose of the present study is to discuss a randomized controlled trial (RCT) protocol in which we aim to investigate and compare the effects of neck-specific exercise programmes versus general exercise programmes in patients with CNNP.

Methods: A 2*2 factorial RCT with before-after design. Sixty-four participants with CNNP will be recruited into the study. They will be randomly divided into two groups, including specific neck exercise and general exercise. Each exercise programme will be carried out three times a week and will last for 8 weeks. Primarily, dorsal and ventral neck muscle thickness, pain and disability and secondarily, muscle strength, quality of life, sleep quality, fear avoidance and neck range of motion will be assessed at the baseline and immediately at the end of the exercise protocol.

Discussion: The results of this study will inform clinicians on which type of exercise is more beneficial for patients with CNNP.

Trial registration: IRCT2017091620787N2, Sep 16 2017.

Keywords: Deep neck muscles; Exercise; Muscle thickness; Neck pain.

Conflict of interest statement

The authors declare that they have no competing interests.

Figures

Fig. 1
Fig. 1
The diagram demonstrating randomized controlled trial protocol

References

    1. Chiu TT, Leung AS. Neck pain in Hong Kong: a telephone survey on prevalence, consequences, and risk groups. Spine. 2006;31(16):E540–E544. doi: 10.1097/.
    1. Tsakitzidis G, Remmen R, Dankaerts W, Van Royen P. Non-specific neck pain and evidence-based practice. Eur Sci J. 2013;9(3):1–19.
    1. Cagnie B, Danneels L, Van Tiggelen D, De Loose V, Cambier D. Individual and work related risk factors for neck pain among office workers: a cross sectional study. Eur Spine J. 2007;16(5):679–686. doi: 10.1007/s00586-006-0269-7.
    1. Wermeling M, Scherer M, Himmel W. GPs’ experiences of managing non-specific neck pain--a qualitative study. Fam Pract. 2011;28(3):300–306. doi: 10.1093/fampra/cmq109.
    1. Falla DL, Jull GA, Hodges PW. Patients with neck pain demonstrate reduced electromyographic activity of the deep cervical flexor muscles during performance of the craniocervical flexion test. Spine. 2004;29(19):2108–2114. doi: 10.1097/01.brs.0000141170.89317.0e.
    1. Kim JY, Kwag KI. Clinical effects of deep cervical flexor muscle activation in patients with chronic neck pain. J Phys Ther Sci. 2016;28(1):269–273. doi: 10.1589/jpts.28.269.
    1. Karimi N, Rezasoltani A, Rahnama L, Noori-Kochi F, Jaberzadeh S. Ultrasonographic analysis of dorsal neck muscles thickness changes induced by isometric contraction of shoulder muscles: a comparison between patients with chronic neck pain and healthy controls. Man Ther. 2016;22:174–178. doi: 10.1016/j.math.2015.12.004.
    1. Fernández-De-Las-Peñas C, Albert-Sanchís JC, Buil M, Benitez JC, Alburquerque-Sendín F. Cross-sectional area of cervical multifidus muscle in females with chronic bilateral neck pain compared to controls. J Orthop Sports Phys Ther. 2008;38(4):175–180. doi: 10.2519/jospt.2008.2598.
    1. O’Leary S, Falla D, Elliott JM, Jull G. Muscle dysfunction in cervical spine pain: implications for assessment and management. J Orthop Sports Phys Ther. 2009;39(5):324–333. doi: 10.2519/jospt.2009.2872.
    1. Panjabi MM, Cholewicki J, Nibu K, Grauer J, Babat LB, Dvorak J. Critical load of the human cervical spine: an in vitro experimental study. Clin Biomech. 1998;13(1):11–17. doi: 10.1016/S0268-0033(97)00057-0.
    1. Durall CJ. Therapeutic exercise for athletes with nonspecific neck pain: a current concepts review. Sports Health. 2012;4(4):293–301. doi: 10.1177/1941738112446138.
    1. Chiu TT, Lam T-H, Hedley AJ. A randomized controlled trial on the efficacy of exercise for patients with chronic neck pain. Spine. 2005;30(1):E1–E7. doi: 10.1097/01.brs.0000149082.68262.b1.
    1. Rezasoltani A, Mohammad M, KhalkhaliZavieh M, Tabatabaee SM. A study on the effectiveness of shoulder strengthening exercises on thickness of the neck extensor muscles. Rehabil Med. 2013;2(1):7–13.
    1. Khan M, Soomro RR, Ali SS. The effectiveness of isometric exercises as compared to general exercises in the management of chronic non-specificneck pain. Pak J Pharm Sci. 2014;27(5):1719–1722.
    1. Akhter S, Khan M, Ali SS, Soomro RR. Role of manual therapy with exercise regime versus exercise regime alone in the management of non-specific chronic neck pain. Pak J Pharm Sci. 2014;27(6 Suppl):2125–2128.
    1. Jull G, Falla D, Vicenzino B, Hodges P. The effect of therapeutic exercise on activation of the deep cervical flexor muscles in people with chronic neck pain. Man Ther. 2009;14(6):696–701. doi: 10.1016/j.math.2009.05.004.
    1. Griffiths C, Dziedzic K, Waterfield J, Sim J. Effectiveness of specific neck stabilization exercises or a general neck exercise program for chronic neck disorders: a randomized controlled trial. J Rheumatol. 2009;36(2):390–397. doi: 10.3899/jrheum.080376.
    1. Rudolfsson T, Djupsjobacka M, Hager C, Bjorklund M. Effects of neck coordination exercise on sensorimotor function in chronic neck pain: a randomized controlled trial. J Rehabil Med. 2014;46(9):908–914. doi: 10.2340/16501977-1869.
    1. Gallego Izquierdo T, Pecos-Martin D, Lluch Girbes E, Plaza-Manzano G, Rodriguez Caldentey R, Mayor Melus R, Blanco Mariscal D, Falla D. Comparison of cranio-cervical flexion training versus cervical proprioception training in patients with chronic neck pain: a randomized controlled clinical trial. J Rehabil Med. 2016;48(1):48–55. doi: 10.2340/16501977-2034.
    1. Borisut S, Vongsirinavarat M, Vachalathiti R, Sakulsriprasert P. Effects of strength and endurance training of superficial and deep neck muscles on muscle activities and pain levels of females with chronic neck pain. J Phys Ther Sci. 2013;25(9):1157–1162. doi: 10.1589/jpts.25.1157.
    1. Page P, Frank C, Lardner R. Assessment and treatment of muscle imbalance: the Janda approach: human kinetics. 2010.
    1. Mense S. Muscle pain: mechanisms and clinical significance. Dtsch Arztebl Int. 2008;105(12):214–219.
    1. Tunwattanapong P, Kongkasuwan R, Kuptniratsaikul V. The effectiveness of a neck and shoulder stretching exercise program among office workers with neck pain: a randomized controlled trial. Clin Rehabil. 2016;30(1):64–72. doi: 10.1177/0269215515575747.
    1. Ylinen J, Kautiainen H, Wiren K, Hakkinen A. Stretching exercises vs manual therapy in treatment of chronic neck pain: a randomized, controlled cross-over trial. J Rehabil Med. 2007;39(2):126–132. doi: 10.2340/16501977-0015.
    1. Landén Ludvigsson Maria, Peterson Gunnel, Peolsson Anneli. The effect of three exercise approaches on health-related quality of life, and factors associated with its improvement in chronic whiplash-associated disorders: analysis of a randomized controlled trial. Quality of Life Research. 2018;28(2):357–368. doi: 10.1007/s11136-018-2004-3.
    1. Peolsson A, Ludvigsson ML, Tigerfors A-M, Peterson G. Effects of neck-specific exercises compared to waiting list for individuals with chronic whiplash-associated disorders: a prospective, randomized controlled study. Arch Phys Med Rehabil. 2016;97(2):189–195. doi: 10.1016/j.apmr.2015.10.087.
    1. O’Leary S, Cagnie B, Reeve A, Jull G, Elliott JM. Is there altered activity of the extensor muscles in chronic mechanical neck pain? A functional magnetic resonance imaging study. Arch Phys Med Rehabil. 2011;92(6):929–934. doi: 10.1016/j.apmr.2010.12.021.
    1. Elliott J, Jull G, Noteboom J, Durbridge G, Gibbon W. Magnetic resonance imaging study of cross-sectional area of the cervical extensor musculature in an asymptomatic cohort. Clin Anat. 2007;20(1):35–40. doi: 10.1002/ca.20252.
    1. Maigne JY, Cornelis P, Chatellier G. Lower back pain and neck pain: is it possible to identify the painful side by palpation only? Ann Phys Rehabil Med. 2012;55(2):103–111. doi: 10.1016/j.rehab.2012.01.001.
    1. Misailidou V, Malliou P, Beneka A, Karagiannidis A, Godolias G. Assessment of patients with neck pain: a review of definitions, selection criteria, and measurement tools. J Chiropr Med. 2010;9(2):49–59. doi: 10.1016/j.jcm.2010.03.002.
    1. Rahnama L, Rezasoltani A, Zavieh MK, NooriKochi F, Baghban AA. Differences in cervical multifidus muscle thickness during isometric contraction of shoulder muscles: a comparison between patients with chronic neck pain and healthy controls. J Manip Physiol Ther. 2015;38(3):210–217. doi: 10.1016/j.jmpt.2014.11.008.
    1. Rezasoltani A, Ali-Reza A, Khosro KK, Abbass R. Preliminary study of neck muscle size and strength measurements in females with chronic non-specific neck pain and healthy control subjects. Man Ther. 2010;15(4):400–403. doi: 10.1016/j.math.2010.02.010.
    1. Lieber RL. Skeletal muscle structure, function, and plasticity: the physiological basis of rehabilitation. 2010.
    1. Bijur PE, Silver W, Gallagher EJ. Reliability of the visual analog scale for measurement of acute pain. Acad Emerg Med Off J Soc Acad Emerg Med. 2001;8(12):1153–1157. doi: 10.1111/j.1553-2712.2001.tb01132.x.
    1. Mousavi SJ, Parnianpour M, Montazeri A, Mehdian H, Karimi A, Abedi M, Ashtiani AA, Mobini B, Hadian MR. Translation and validation study of the Iranian versions of the neck disability index and the neck pain and disability scale. Spine. 2007;32(26):E825–E831. doi: 10.1097/BRS.0b013e31815ce6dd.
    1. Hassan Azarsa M, Shadmehr A, Jalaei S. The effect of the loading on dynamic stability and scapular asymmetry. J Rehabil Sci Res. 2014;1(1):12–16.
    1. Rankin G, Stokes M, Newham DJ. Size and shape of the posterior neck muscles measured by ultrasound imaging: normal values in males and females of different ages. Man Ther. 2005;10(2):108–115. doi: 10.1016/j.math.2004.08.004.
    1. Jeong BL, Ha SM, Jeon IC, Hong KH. Reliability of ultrasonography measurement for the longus colli according to inward probe pressure. J Phys Ther Sci. 2015;27(11):3579–3581. doi: 10.1589/jpts.27.3579.
    1. Rahnama L, Rezasoltani A, Khalkhali Zavieh M, Noori Kochi F, Akbarzadeh Baghban A. The effects of isometric contraction of shoulder muscles on cervical multifidus muscle dimensions in healthy office workers. J Bodyw Mov Ther. 2014;18(3):383–389. doi: 10.1016/j.jbmt.2013.11.011.
    1. Lee J-P, Tseng W-YI, Shau Y-W, Wang C-L, Wang H-K, Wang S-F. Measurement of segmental cervical multifidus contraction by ultrasonography in asymptomatic adults. Man Ther. 2007;12(3):286–294. doi: 10.1016/j.math.2006.07.008.
    1. Kristjansson E. Reliability of ultrasonography for the cervical multifidus muscle in asymptomatic and symptomatic subjects. Man Ther. 2004;9(2):83–88. doi: 10.1016/S1356-689X(03)00059-6.
    1. Cagnie B, Derese E, Vandamme L, Verstraete K, Cambier D, Danneels L. Validity and reliability of ultrasonography for the longus colli in asymptomatic subjects. Man Ther. 2009;14(4):421–426. doi: 10.1016/j.math.2008.07.007.
    1. Farooq MN, Mohseni Bandpei MA, Ali M, Khan GA. Reliability of the universal goniometer for assessing active cervical range of motion in asymptomatic healthy persons. Pak J Med Sci. 2016;32(2):457–461.
    1. Norkin CC, White DJ. Measurement of joint motion : a guid to goniometry. 2004. p. 16.
    1. Goodarzi F, Rahnama L, Karimi N, Baghi R, Jaberzadeh S. The effects of forward head posture on neck extensor muscle thickness: an ultrasonographic study. J Manip Physiol Ther. 2018;41(1):34–41. doi: 10.1016/j.jmpt.2017.07.012.
    1. Rezasoltani A, Nasiri R, Faizei AM, Zaafari G, Mirshahvelayati AS, Bakhshidarabad L. The variation of the strength of neck extensor muscles and semispinalis capitis muscle size with head and neck position. J Bodyw Mov Ther. 2013;17(2):200–203. doi: 10.1016/j.jbmt.2012.07.001.
    1. Meldrum D, Cahalane E, Conroy R, Fitzgerald D, Hardiman O. Maximum voluntary isometric contraction: reference values and clinical application. Amyotroph Lateral Scler. 2007;8(1):47–55. doi: 10.1080/17482960601012491.
    1. Schomacher J, Erlenwein J, Dieterich A, Petzke F, Falla D. Can neck exercises enhance the activation of the semispinalis cervicis relative to the splenius capitis at specific spinal levels? Man Ther. 2015;20(5):694–702. doi: 10.1016/j.math.2015.04.010.
    1. Moghaddam JF, Nakhaee N, Sheibani V, Garrusi B, Amirkafi A. Reliability and validity of the Persian version of the Pittsburgh Sleep Quality Index (PSQI-P) Sleep Breath. 2012;16(1):79–82. doi: 10.1007/s11325-010-0478-5.
    1. Montazeri A, Goshtasebi A, Vahdaninia M, Gandek B. The short form health survey (SF-36): translation and validation study of the Iranian version. Qual Life Res. 2005;14(3):875–882. doi: 10.1007/s11136-004-1014-5.
    1. Jenkinson C, Coulter A, Wright L. Short form 36 (SF36) health survey questionnaire: normative data for adults of working age. BMJ. 1993;306(6890):1437–1440. doi: 10.1136/bmj.306.6890.1437.
    1. Askary-Ashtiani A, Ebrahimi-Takamejani I, Torkaman G, Amiri M, Mousavi SJ. Reliability and validity of the Persian versions of the fear avoidance beliefs questionnaire and Tampa scale of Kinesiophobia in patients with neck pain. Spine. 2014;39(18):E1095–E1102. doi: 10.1097/BRS.0000000000000438.
    1. Javanshir K, Amiri M, Mohseni Bandpei MA, De las Penas CF, Rezasoltani A. The effect of different exercise programs on cervical flexor muscles dimensions in patients with chronic neck pain. J Back Musculoskelet Rehabil. 2015;28(4):833–840. doi: 10.3233/BMR-150593.

Source: PubMed

3
Prenumerera