Pregenual or subgenual anterior cingulate cortex as potential effective region for brain stimulation of depression

Ying Jing, Na Zhao, Xin-Ping Deng, Zi-Jian Feng, Guo-Feng Huang, Meng Meng, Yu-Feng Zang, Jue Wang, Ying Jing, Na Zhao, Xin-Ping Deng, Zi-Jian Feng, Guo-Feng Huang, Meng Meng, Yu-Feng Zang, Jue Wang

Abstract

Background: The dorsolateral prefrontal cortex (DLPFC) is the standard stimulation target for the repetitive transcranial magnetic stimulation (rTMS) treatment of major depression disorder (MDD). A retrospective study by Fox and colleagues found that a more negative resting-state functional magnetic resonance imaging (RS-fMRI) functional connectivity (FC) between left DLPFC and the subgenual anterior cingulate cortex (sgACC) in a large group of healthy participants is associated with a better curative effects of rTMS in MDD, suggesting that the sgACC may be an effective region. However, a recent meta-analysis on RS-fMRI studies found that the pregenual ACC (pgACC), rather than the sgACC, of MDD patients showed increased local activity.

Methods: We used the stimulation coordinates in the left DLPFC analyzed by Fox et al. to perform RS-fMRI FC between the stimulation targets obtained from previous rTMS MDD studies and the potential effective regions (sgACC and pgACC, respectively) on the RS-fMRI data from 88 heathy participants.

Results: (a) Both the pgACC and the sgACC were negatively connected to the left DLPFC; (b) both FCs of sgACC-DLPFC and pgACC-DLPFC were more negative in responders than in nonresponders; and (c) the associations between DLPFC-sgACC functional connectivity and clinical efficacy were clustered around the midline sgACC.

Conclusions: Both the pgACC and the sgACC may be potential effective regions for rTMS on the left DLPFC for treatment of MDD. However, individualized ACC-DLPFC FC-based rTMS on depression should be performed in the future to test the pgACC or the sgACC as effective regions.

Trial registration: ClinicalTrials.gov NCT02144467.

Keywords: depression; functional connectivity; pregenual anterior cingulate cortex; repetitive transcranial magnetic stimulation; subgenual anterior cingulate cortex.

Conflict of interest statement

All authors declare that they have no conflict of interest.

© 2020 The Authors. Brain and Behavior published by Wiley Periodicals, Inc.

Figures

Figure 1
Figure 1
The seed regions of interest (ROI) of the pgACC and the sgACC. The 5‐mm and 10‐mm radius spheres for both the sgACC and the pgACC were generated by centering on the coordinates determined by previous studies (Fox et al., 2012; Zhou et al., 2017). ACC, anterior cingulate cortex; pgACC, pregenual ACC; sgACC, subgenual ACC
Figure 2
Figure 2
The FC patterns of the sgACC and pgACC with different size of seeds (a, b) (FDR correction, q < 0.001, cluster size > 100 voxels, two‐tailed). The warm color indicates positive FC of ACCs, and the cold color indicates negative FC. ACC, anterior cingulate cortex; FC, functional connectivity; pgACC, pregenual ACC; sgACC, subgenual ACC
Figure 3
Figure 3
The differences of ACC‐DLPFC FCs between the responders and nonresponders. The DLPFC stimulation targets were from Herbsman et al. (2009). The colored regions in the brain indicate the ROIs of DLPFC (a). The definition of DLPFC was centered in the mean coordinate of responders and nonresponders with a 20‐mm radius, respectively. ACC, anterior cingulate cortex; DLPFC, dorsal lateral prefrontal cortex; FC, functional connectivity; pgACC, pregenual ACC; SE, standard error; sgACC, subgenual ACC. *p < .05; **p < .01
Figure 4
Figure 4
The differences of ACC‐DLPFC FCs between the more effective target and less effective target. The DLPFC stimulation targets were from Fitzgerald et al. (2009) and Fox et al. (2012). The colored regions in the brain indicate the ROIs of DLPFC (a). The definition of DLPFC was centered in the coordinate of more effective target and less effective target with a 20‐mm radius, respectively. ACC, anterior cingulate cortex; DLPFC, dorsal lateral prefrontal cortex; eff., effective; FC, functional connectivity; pgACC, pregenual ACC; SE, standard error; sgACC, subgenual ACC. *p < .05
Figure 5
Figure 5
Correlation between 27 ACC‐DLPFC targets FCs and clinical efficacy of 27 patients. Every dot represents the mean FC value of ACC‐DLPFC across 88 healthy participants at a certain DLPFC target. The definition of DLPFC was centered in the previously reported TMS target with a 10‐mm radius. ACC, anterior cingulate cortex; DLPFC, dorsal lateral prefrontal cortex; FC, functional connectivity; MADRS, Montgomery Asberg Depression Rating Scale; pgACC, pregenual ACC; sgACC, subgenual ACC; TMS, transcranial magnetic stimulation
Figure 6
Figure 6
Correlation between estimated clinical efficacy of nine different DLPFC coordinates and functional connectivity of the sgACC/pgACC. The nine DLPFC targets were selected from literatures (see Table 3), and the estimated clinical efficacy was derived from an empirical equation reported by Herbsman et al. (2009). ACC, anterior cingulate cortex; DLPFC, dorsal lateral prefrontal cortex; FC, functional connectivity; HDRS, Hamilton Depression Rating Scale; pgACC, pregenual ACC; sgACC, subgenual ACC. *p < .05; **p < .01
Figure 7
Figure 7
The voxel‐wise FC analyses between DLPFC and sgACC in a 20‐mm radius medial sgACC ROI (x = 0, y = 16, and z = −10). The crosshair located in the original sgACC coordinate (x = 6, y = 16, and z = −10) from Fox et al. (2012). The colored regions in a and b represent the differences between two DLPFC TMS targets (better efficacy target vs. less efficacy target). The cold color indicates that better clinical efficacy target showed more negative FC (a and b). The cold color region in c represents negative correlation between DLPFC‐sgACC FC and estimated clinical efficacy scores in nine DLPFC coordinates. All the statistical maps were thresholded at uncorrected p < .05. The red color in d represents overlapping brain region of a, b, and c. DLPFC, dorsal lateral prefrontal cortex; FC, functional connectivity; L, left; R, right; ROI, region of interest; sgACC, subgenual anterior cingulate cortex; TMS, transcranial magnetic stimulation

References

    1. Ahdab, R. , Ayache, S. S. , Brugieres, P. , Farhat, W. H. , & Lefaucheur, J. P. (2016). The hand motor hotspot is not always located in the hand knob: A neuronavigated transcranial magnetic stimulation study. Brain Topography, 29(4), 590–597. 10.1007/s10548-016-0486-2
    1. Arfeller, C. , Schwarzbach, J. , Ubaldi, S. , Ferrari, P. , Barchiesi, G. , & Cattaneo, L. (2013). Whole‐brain haemodynamic after‐effects of 1‐Hz magnetic stimulation of the posterior superior temporal cortex during action observation. Brain Topography, 26(2), 278–291.
    1. Baeken, C. , Marinazzo, D. , Wu, G.‐R. , Van Schuerbeek, P. , De Mey, J. , Marchetti, I. , … De Raedt, R. (2014). Accelerated HF‐rTMS in treatment‐resistant unipolar depression: Insights from subgenual anterior cingulate functional connectivity. The World Journal of Biological Psychiatry, 15(4), 286–297. 10.3109/15622975.2013.872295
    1. Ball, T. M. , Stein, M. B. , & Paulus, M. P. (2014). Toward the application of functional neuroimaging to individualized treatment for anxiety and depression. Depress Anxiety, 31(11), 920–933. 10.1002/da.22299
    1. Battelli, L. , Grossman, E. D. , & Plow, E. B. (2017). Local immediate versus long‐range delayed changes in functional connectivity following rTMS on the visual attention network. Brain Stimulation, 10(2), 263–269. 10.1016/j.brs.2016.10.009
    1. Baxter, L. R. Jr , Schwartz, J. M. , Phelps, M. E. , Mazziotta, J. C. , Guze, B. H. , Selin, C. E. , … Sumida, R. M. (1989). Reduction of prefrontal cortex glucose metabolism common to three types of depression. Archives of General Psychiatry, 46(3), 243–250. 10.1001/archpsyc.1989.01810030049007
    1. Berlim, M. T. , Frederique, V. D. E. , & Daskalakis, Z. J. (2013). Efficacy and acceptability of high frequency repetitive transcranial magnetic stimulation (rTMS) versus electroconvulsive therapy (ECT) for major depression: A systematic review and meta‐analysis of randomized trials. Depression & Anxiety, 30(7), 614–623.
    1. Boes, A. D. , Uitermarkt, B. D. , Albazron, F. M. , Lan, M. J. , Liston, C. , Pascual‐Leone, A. , … Fox, M. D. (2018). Rostral anterior cingulate cortex is a structural correlate of repetitive TMS treatment response in depression. Brain Stimulation, 11(3), 575–581. 10.1016/j.brs.2018.01.029
    1. Burt, T. , Lisanby, S. H. , & Sackeim, H. A. (2002). Neuropsychiatric applications of transcranial magnetic stimulation: A meta analysis. International Journal of Neuropsychopharmacology, 5(1), 73.
    1. Cash, R. F. , Zalesky, A. , Thomson, R. H. , Tian, Y. , Cocchi, L. , & Fitzgerald, P. B. (2019). Subgenual functional connectivity predicts antidepressant treatment response to transcranial magnetic stimulation: Independent validation and evaluation of personalization. Biological Psychiatry, 86(2), e5–e7.
    1. Cho, S. S. , & Strafella, A. P. (2009). rTMS of the left dorsolateral prefrontal cortex modulates dopamine release in the ipsilateral anterior cingulate cortex and orbitofrontal cortex. PLoS ONE, 4(8), e6725.
    1. Di Lazzaro, V. , Dileone, M. , Pilato, F. , Capone, F. , Musumeci, G. , Ranieri, F. , … Profice, P. (2011). Modulation of motor cortex neuronal networks by rTMS: Comparison of local and remote effects of six different protocols of stimulation. Journal of Neurophysiology, 105(5), 2150.
    1. Downey, D. , Dutta, A. , McKie, S. , Dawson, G. R. , Dourish, C. T. , Craig, K. , … Deakin, J. F. W. (2016). Comparing the actions of lanicemine and ketamine in depression: Key role of the anterior cingulate. European Neuropsychopharmacology, 26(6), 994–1003. 10.1016/j.euroneuro.2016.03.006
    1. Drevets, W. C. (2000). Neuroimaging studies of mood disorders. Biological Psychiatry, 48(8), 813–829.
    1. Drevets, W. C. , Savitz, J. , & Trimble, M. (2008). The subgenual anterior cingulate cortex in mood disorders. CNS Spectrums, 13(8), 663–681.
    1. Eldaief, M. C. , Halko, M. A. , Buckner, R. L. , & Pascual‐Leone, A. (2011). Transcranial magnetic stimulation modulates the brain's intrinsic activity in a frequency‐dependent manner. Proceedings of the National Academy of Sciences of the United States of America, 108(52), 21229–21234. 10.1073/pnas.1113103109
    1. Ernst, J. , Hock, A. , Henning, A. , Seifritz, E. , Boeker, H. , & Grimm, S. (2016). Increased pregenual anterior cingulate glucose and lactate concentrations in major depressive disorder. Molecular Psychiatry, 22, 113–119.
    1. Fitzgerald, P. B. , Hoy, K. , McQueen, S. , Maller, J. J. , Herring, S. , Segrave, R. , … Daskalakis, Z. J. (2009). A randomized trial of rTMS targeted with MRI based neuro‐navigation in treatment‐resistant depression. Neuropsychopharmacology, 34(5), 1255–1262. 10.1038/npp.2008.233
    1. Fox, M. D. , Buckner, R. L. , White, M. P. , Greicius, M. D. , & Pascual‐Leone, A. (2012). Efficacy of transcranial magnetic stimulation targets for depression is related to intrinsic functional connectivity with the subgenual cingulate. Biological Psychiatry, 72(7), 595–603. 10.1016/j.biopsych.2012.04.028
    1. Ge, R. , Downar, J. , Blumberger, D. M. , Daskalakis, Z. J. , & Vila‐Rodriguez, F. (2020). Functional connectivity of the anterior cingulate cortex predicts treatment outcome for rTMS in treatment‐resistant depression at 3‐month follow‐up. Brain Stimulation, 13(1), 206–214. 10.1016/j.brs.2019.10.012
    1. George, M. S. , Wassermann, E. M. , Williams, W. A. , Callahan, A. , Ketter, T. A. , Basser, P. , … Post, R. M. (1995). Daily repetitive transcranial magnetic stimulation (rTMS) improves mood in depression. NeuroReport, 6(14), 1853–1856. 10.1097/00001756-199510020-00008
    1. Herbsman, T. , Avery, D. , Ramsey, D. , Holtzheimer, P. , Wadjik, C. , Hardaway, F. , … Nahas, Z. (2009). More lateral and anterior prefrontal coil location is associated with better repetitive transcranial magnetic stimulation antidepressant response. Biological Psychiatry, 66(5), 509–515.
    1. Herwig, U. , Lampe, Y. , Juengling, F. D. , Wunderlich, A. , Walter, H. , Spitzer, M. , & Schönfeldt‐Lecuona, C. (2003). Add‐on rTMS for treatment of depression: A pilot study using stereotaxic coil‐navigation according to PET data. Journal of Psychiatric Research, 37(4), 267–275. 10.1016/s0022-3956(03)00042-6
    1. Herwig, U. , Padberg, F. , Unger, J. , Spitzer, M. , & Schönfeldt‐Lecuona, C. (2001). Transcranial magnetic stimulation in therapy studies: Examination of the reliability of “standard” coil positioning by neuronavigation. Biological Psychiatry, 50(1), 58–61.
    1. Ho, T. C. , Yang, G. , Wu, J. , Cassey, P. , Brown, S. D. , Hoang, N. , … Yang, T. T. (2014). Functional connectivity of negative emotional processing in adolescent depression. Journal of Affective Disorders, 155, 65–74.
    1. Horn, D. I. , Yu, C. , Steiner, J. , Buchmann, J. , Kaufmann, J. , Osoba, A. , … Walter, M. (2010). Glutamatergic and resting‐state functional connectivity correlates of severity in major depression – The role of pregenual anterior cingulate cortex and anterior insula. Frontiers in Systems Neuroscience, 4, 33 10.3389/fnsys.2010.00033
    1. Jaworska, N. , MacMaster, F. P. , Yang, X.‐R. , Courtright, A. , Pradhan, S. , Gaxiola, I. , … Ramasubbu, R. (2014). Influence of age of onset on limbic and paralimbic structures in depression. Psychiatry & Clinical Neurosciences, 68(12), 812–820.
    1. Ji, G. J. , Yu, F. , Liao, W. , & Wang, K. (2017). Dynamic aftereffects in supplementary motor network following inhibitory transcranial magnetic stimulation protocols. NeuroImage, 149(Complete), 285–294.
    1. Kedzior, K. K. , & Reitz, S. K. (2014). Short‐term efficacy of repetitive transcranial magnetic stimulation (rTMS) in depression‐reanalysis of data from meta‐analyses up to 2010. BMC Psychology, 2(1), 1–19.
    1. Ken‐Ichi, A. , & Graybiel, A. M. (2012). Localized microstimulation of primate pregenual cingulate cortex induces negative decision‐making. Nature Neuroscience, 15(5), 776–785.
    1. Kito, S. , Fujita, K. , & Koga, Y. (2008). Regional cerebral blood flow changes after low‐frequency transcranial magnetic stimulation of the right dorsolateral prefrontal cortex in treatment‐resistant depression. Neuropsychobiology, 58(1), 29–36. 10.1159/000154477
    1. Kito, S. , Hasegawa, T. , & Koga, Y. (2011). Neuroanatomical correlates of therapeutic efficacy of low‐frequency right prefrontal transcranial magnetic stimulation in treatment‐resistant depression. Psychiatry and Clinical Neurosciences, 65(2), 175–182. 10.1111/j.1440-1819.2010.02183.x
    1. Lesenskyj, A. M. , Samples, M. P. , Farmer, J. M. , & Maxwell, C. R. (2018). Treating refractory depression in Parkinson's disease: A meta‐analysis of transcranial magnetic stimulation. Translational Neurodegeneration, 7(1), 8.
    1. Liston, C. , Chen, A. C. , Zebley, B. D. , Drysdale, A. T. , Gordon, R. , Leuchter, B. , … Dubin, M. J. (2014). Default mode network mechanisms of transcranial magnetic stimulation in depression. Biological Psychiatry, 76(7), 517–526. 10.1016/j.biopsych.2014.01.023
    1. Liu, Y. I. , Du, L. , Li, Y. , Liu, H. , Zhao, W. , Liu, D. , … Luo, Q. (2015). Antidepressant effects of electroconvulsive therapy correlate with subgenual anterior cingulate activity and connectivity in depression. Medicine, 94(45), e2033.
    1. Mannie, Z. N. , Norbury, R. , Murphy, S. E. , Inkster, B. , Harmer, C. J. , & Cowen, P. J. (2008). Affective modulation of anterior cingulate cortex in young people at increased familial risk of depression. British Journal of Psychiatry, 192(5), 356–361.
    1. Nahas, Z. , Teneback, C. C. , Kozel, A. , Speer, A. M. , DeBrux, C. , Molloy, M. , … George, M. S. (2001). Brain effects of TMS delivered over prefrontal cortex in depressed adults: Role of stimulation frequency and coil‐cortex distance. Journal of Neuropsychiatry & Clinical Neurosciences, 13(4), 459.
    1. Paillère Martinot, M.‐L. , Galinowski, A. , Ringuenet, D. , Gallarda, T. , Lefaucheur, J.‐P. , Bellivier, F. , … Martinot, J.‐L. (2010). Influence of prefrontal target region on the efficacy of repetitive transcranial magnetic stimulation in patients with medication‐resistant depression: A [(18)F]‐fluorodeoxyglucose PET and MRI study. International Journal of Neuropsychopharmacology, 13(1), 45–59. 10.1017/S146114570900008X
    1. Pizzagalli, D. A. (2010). Frontocingulate dysfunction in depression: Toward biomarkers of treatment response. Neuropsychopharmacology Official Publication of the American College of Neuropsychopharmacology, 36(1), 183–206.
    1. Rajkowska, G. , & Goldman‐Rakic, P. S. (1995). Cytoarchitectonic definition of prefrontal areas in the normal human cortex: II. Variability in locations of areas 9 and 46 and relationship to the Talairach Coordinate System. Cerebral Cortex, 5(4), 323–327.
    1. Rusjan, P. M. , Barr, M. S. , Farzan, F. , Arenovich, T. , Maller, J. J. , Fitzgerald, P. B. , & Daskalakis, Z. J. (2010). Optimal transcranial magnetic stimulation coil placement for targeting the dorsolateral prefrontal cortex using novel magnetic resonance image‐guided neuronavigation. Human Brain Mapping, 31(11), 1643–1652. 10.1002/hbm.20964
    1. Sacher, J. , Neumann, J. , Fünfstück, T. , Soliman, A. , Villringer, A. , & Schroeter, M. L. (2012). Mapping the depressed brain: A meta‐analysis of structural and functional alterations in major depressive disorder. Journal of Affective Disorders, 140(2), 142–148.
    1. Silverstein, W. K. , Noda, Y. , Barr, M. S. , Vila‐Rodriguez, F. , Rajji, T. K. , Fitzgerald, P. B. , … Blumberger, D. M. (2015). Neurobiological predictors of response to dorsolateral prefrontal cortex repetitive transcranial magnetic stimulation in depression: A systematic review. Depress Anxiety, 32(12), 871–891. 10.1002/da.22424
    1. Slotema, C. W. , Blom, J. D. , Hoek, H. W. , & Sommer, I. E. (2010). Should we expand the toolbox of psychiatric treatment methods to include Repetitive Transcranial Magnetic Stimulation (rTMS)? A meta‐analysis of the efficacy of rTMS in psychiatric disorders. Journal of Clinical Psychiatry, 71(7), 873–884.
    1. Solomon‐Harris, L. M. , Rafique, S. A. , & Steeves, J. K. (2016). Consecutive TMS‐fMRI reveals remote effects of neural noise to the “Occipital Face Area”. Brain Research, 1650, 134–141.
    1. Wang, J. , Meng, H.‐J. , Ji, G.‐J. , Jing, Y. , Wang, H.‐X. , Deng, X.‐P. , … Zhang, J. (2019). Finger tapping task activation vs. TMS hotspot: Different locations and networks. Brain Topography, 33(1), 123–134. 10.1007/s10548-019-00741-9
    1. Wang, J. X. , Rogers, L. M. , Gross, E. Z. , Ryals, A. J. , Dokucu, M. E. , Brandstatt, K. L. , … Voss, J. L. (2014). Targeted enhancement of cortical‐hippocampal brain networks and associative memory. Science, 345(6200), 1054–1057. 10.1126/science.1252900
    1. Weigand, A. , Horn, A. , Caballero, R. , Cooke, D. , Stern, A. P. , Taylor, S. F. , … Fox, M. D. (2018). Prospective validation that subgenual connectivity predicts antidepressant efficacy of transcranial magnetic stimulation sites. Biological Psychiatry, 84(1), 28–37. 10.1016/j.biopsych.2017.10.028
    1. Yan, C. G. , Wang, X. D. , Zuo, X. N. , & Zang, Y. F. (2016). DPABI: Data processing & analysis for (resting‐state) brain imaging. Neuroinformatics, 14(3), 339–351. 10.1007/s12021-016-9299-4
    1. Zhou, M. , Hu, X. , Lu, L. , Zhang, L. , Chen, L. , Gong, Q. , & Huang, X. (2017). Intrinsic cerebral activity at resting state in adults with major depressive disorder: A meta‐analysis. Progress in Neuro‐Psychopharmacology and Biological Psychiatry, 75, 157–164. 10.1016/j.pnpbp.2017.02.001

Source: PubMed

3
Prenumerera