Disrupted Resting State Network of Fibromyalgia in Theta frequency

Mi Kyung Choe, Manyoel Lim, June Sic Kim, Dong Soo Lee, Chun Kee Chung, Mi Kyung Choe, Manyoel Lim, June Sic Kim, Dong Soo Lee, Chun Kee Chung

Abstract

Fibromyalgia (FM), chronic widespread pain, exhibits spontaneous pain without external stimuli and is associated with altered brain activities during resting state. To understand the topological features of brain network in FM, we employed persistent homology which is a multiple scale network modeling framework not requiring thresholding. Spontaneous magnetoencephalography (MEG) activity was recorded in 19 healthy controls (HCs) and 18 FM patients. Barcode, single linkage dendrogram and single linkage matrix were generated based on the proposed modeling framework. In theta band, the slope of decrease in the number of connected components in barcodes showed steeper in HC, suggesting FM patients had decreased global connectivity. FM patients had reduced connectivity within default mode network, between middle/inferior temporal gyrus and visual cortex. The longer pain duration was correlated with reduced connectivity between inferior temporal gyrus and visual cortex. Our findings demonstrated that the aberrant resting state network could be associated with dysfunction of sensory processing in chronic pain. The spontaneous nature of FM pain may accrue to disruption of resting state network.

Conflict of interest statement

The authors declare that they have no competing interests.

Figures

Figure 1
Figure 1
The barcode of the fibromyalgia (FM) and healthy controls (HCs) over increasing filtration values in theta frequency. Azure ones indicate that the barcodes of FM subjects, and yellow-orange ones indicate that the barcodes of HC subjects. The blue one is the mean of barcode for FM patients, and the red one is the mean of barcode for HCs. The number of connected components represents clustered set of nodes covering whole brain and indicate global connectivity of brain network.
Figure 2
Figure 2
Local network properties based on persistent homology in theta band. Comparison of single linkage matrix (SLM) between fibromyalgia (FM) patients and healthy controls (HCs) (upper). Difference in the resting state network between FM and HC (p < 0.001) (lower). L, left; R, right; F1, superior frontal gyrus, dorsolateral; F2, middle frontal gyrus; F1M, superior frontal gyrus, medial; P1, superior parietal gyrus; PCIN, posterior cingulate gyrus; PQ, precuneus; ACIN, anterior cingulate gyrus; T2, middle temporal gyrus; V1, calcarine fissure; Q, cuneus; LING, lingual gyrus; O1, superior occipital gyrus; O3, Inferior occipital gyrus; FUSI, fusiform gyrus; T3, Inferior temporal gyrus; AN, auditory network; DAN, dorsal attention network; DMN, default mode network; SMN, somatosensory network; VN, visual network.
Figure 3
Figure 3
Clinical correlation between Single linkage distance (SLD) and disease duration in fibromyalgia (FM) patients. R, right; Q, cuneus; T3, Inferior temporal gyrus.
Figure 4
Figure 4
Flowchart of network analysis based on persistent homology. Neural activities on the source level were extracted at the predefined 76 nodes and the distance matrix was calculated. Graph filtration based on persistent homology was performed generating barcode, single linkage dendrogram, and single linkage matrix.

References

    1. Clauw, D. J., Arnold, L. M., McCarberg, B. H. & FibroCollaborative. The science of fibromyalgia. Mayo Clin Proc86, 907–911, 10.4065/mcp.2011.0206 (2011).
    1. Apkarian AV, Hashmi JA, Baliki MN. Pain and the brain: specificity and plasticity of the brain in clinical chronic pain. Pain. 2011;152:S49–64. doi: 10.1016/j.pain.2010.11.010.
    1. Bolwerk, A., Seifert, F. & Maihofner, C. Altered resting-state functional connectivity in complex regional pain syndrome. J Pain14, 1107–1115 e1108, 10.1016/j.jpain.2013.04.007 (2013).
    1. Kim JY, et al. Increased power spectral density in resting-state pain-related brain networks in fibromyalgia. Pain. 2013;154:1792–1797. doi: 10.1016/j.pain.2013.05.040.
    1. Tessitore A, et al. Abnormal Connectivity Within Executive Resting-State Network in Migraine With Aura. Headache. 2015;55:794–805. doi: 10.1111/head.12587.
    1. Baliki MN, Chang PC, Baria AT, Centeno MV, Apkarian AV. Resting-sate functional reorganization of the rat limbic system following neuropathic injury. Sci Rep. 2014;4:6186. doi: 10.1038/srep06186.
    1. Baliki MN, Geha PY, Apkarian AV, Chialvo DR. Beyond feeling: chronic pain hurts the brain, disrupting the default-mode network dynamics. J Neurosci. 2008;28:1398–1403. doi: 10.1523/JNEUROSCI.4123-07.2008.
    1. Napadow V, et al. Intrinsic brain connectivity in fibromyalgia is associated with chronic pain intensity. Arthritis Rheum. 2010;62:2545–2555. doi: 10.1002/art.27497.
    1. Lopez-Sola M, et al. Altered functional magnetic resonance imaging responses to nonpainful sensory stimulation in fibromyalgia patients. Arthritis Rheumatol. 2014;66:3200–3209. doi: 10.1002/art.38781.
    1. Choi W, Lim M, Kim JS, Kim DJ, Chung CK. Impaired pre-attentive auditory processing in fibromyalgia: A mismatch negativity (MMN) study. Clin Neurophysiol. 2015;126:1310–1318. doi: 10.1016/j.clinph.2014.10.012.
    1. Choi, W., Lim, M., Kim, J. S. & Chung, C. K. Habituation deficit of auditory N100m in patients with fibromyalgia. Eur J Pain, 10.1002/ejp.883 (2016).
    1. Lim M, et al. Disinhibition of the primary somatosensory cortex in patients with fibromyalgia. Pain. 2015;156:666–674. doi: 10.1097/j.pain.0000000000000096.
    1. Julien N, Goffaux P, Arsenault P, Marchand S. Widespread pain in fibromyalgia is related to a deficit of endogenous pain inhibition. Pain. 2005;114:295–302. doi: 10.1016/j.pain.2004.12.032.
    1. Ploner M, Sorg C, Gross J. Brain Rhythms of Pain. Trends Cogn Sci. 2017;21:100–110. doi: 10.1016/j.tics.2016.12.001.
    1. Ichesco, E. et al. Altered resting state connectivity of the insular cortex in individuals with fibromyalgia. J Pain15, 815–826 e811, 10.1016/j.jpain.2014.04.007 (2014).
    1. Loggia ML, et al. Default mode network connectivity encodes clinical pain: an arterial spin labeling study. Pain. 2013;154:24–33. doi: 10.1016/j.pain.2012.07.029.
    1. Gonzalez-Villar AJ, Samartin-Veiga N, Arias M, Carrillo-de-la-Pena MT. Increased neural noise and impaired brain synchronization in fibromyalgia patients during cognitive interference. Sci Rep. 2017;7:5841. doi: 10.1038/s41598-017-06103-4.
    1. Fallon, N., Chiu, Y., Nurmikko, T. & Stancak, A. Altered theta oscillations in resting EEG of fibromyalgia syndrome patients. Eur J Pain, 10.1002/ejp.1076 (2017).
    1. Cauda F, et al. Altered resting state in diabetic neuropathic pain. PLoS One. 2009;4:e4542. doi: 10.1371/journal.pone.0004542.
    1. Bullmore E, Sporns O. Complex brain networks: graph theoretical analysis of structural and functional systems. Nat Rev Neurosci. 2009;10:186–198. doi: 10.1038/nrn2575.
    1. Sporns O. The human connectome: a complex network. Ann N Y Acad Sci. 2011;1224:109–125. doi: 10.1111/j.1749-6632.2010.05888.x.
    1. Hahm J, et al. Gating of memory encoding of time-delayed cross-frequency MEG networks revealed by graph filtration based on persistent homology. Sci Rep. 2017;7:41592. doi: 10.1038/srep41592.
    1. Lee H, Kang H, Chung MK, Kim B-N, Lee DS. Persistent brain network homology from the perspective of dendrogram. Medical Imaging, IEEE Transactions on. 2012;31:2267–2277. doi: 10.1109/TMI.2012.2212450.
    1. Choi H, et al. Abnormal metabolic connectivity in the pilocarpine-induced epilepsy rat model: a multiscale network analysis based on persistent homology. Neuroimage. 2014;99:226–236. doi: 10.1016/j.neuroimage.2014.05.039.
    1. Kim E, et al. Morphological brain network assessed using graph theory and network filtration in deaf adults. Hear Res. 2014;315:88–98. doi: 10.1016/j.heares.2014.06.007.
    1. Kim H, et al. Brain networks engaged in audiovisual integration during speech perception revealed by persistent homology-based network filtration. Brain Connect. 2015;5:245–258. doi: 10.1089/brain.2013.0218.
    1. Im HJ, et al. Disrupted brain metabolic connectivity in a 6-OHDA-induced mouse model of Parkinson’s disease examined using persistent homology-based analysis. Sci Rep. 2016;6:33875. doi: 10.1038/srep33875.
    1. Raichle, M. E. & Snyder, A. Z. A default mode of brain function: a brief history of an evolving idea. Neuroimage37, 1083–1090; discussion 1097-1089, 10.1016/j.neuroimage.2007.02.041 (2007).
    1. Martucci KT, et al. The posterior medial cortex in urologic chronic pelvic pain syndrome: detachment from default mode network-a resting-state study from the MAPP Research Network. Pain. 2015;156:1755–1764. doi: 10.1097/j.pain.0000000000000238.
    1. Gilbert CD, Li W. Top-down influences on visual processing. Nat Rev Neurosci. 2013;14:350–363. doi: 10.1038/nrn3476.
    1. Lehky SR, Sereno AB. Comparison of shape encoding in primate dorsal and ventral visual pathways. J Neurophysiol. 2007;97:307–319. doi: 10.1152/jn.00168.2006.
    1. Qian H, Wang X, Wang Z, Wang Z, Liu P. Altered Vision-Related Resting-State Activity in Pituitary Adenoma Patients with Visual Damage. PLoS One. 2016;11:e0160119. doi: 10.1371/journal.pone.0160119.
    1. Krajcovicova L, Mikl M, Marecek R, Rektorova I. Disturbed default mode network connectivity patterns in Alzheimer’s disease associated with visual processing. J Alzheimers Dis. 2014;41:1229–1238.
    1. Pujol J, et al. The contribution of sensory system functional connectivity reduction to clinical pain in fibromyalgia. Pain. 2014;155:1492–1503. doi: 10.1016/j.pain.2014.04.028.
    1. Mu Y, Fan Y, Mao L, Han S. Event-related theta and alpha oscillations mediate empathy for pain. Brain Res. 2008;1234:128–136. doi: 10.1016/j.brainres.2008.07.113.
    1. Wang J, et al. Theta-frequency phase-locking of single anterior cingulate cortex neurons and synchronization with the medial thalamus are modulated by visceral noxious stimulation in rats. Neuroscience. 2015;298:200–210. doi: 10.1016/j.neuroscience.2015.04.024.
    1. Drewes AM, et al. Pain in chronic pancreatitis: the role of neuropathic pain mechanisms. Gut. 2008;57:1616–1627. doi: 10.1136/gut.2007.146621.
    1. Cifre I, et al. Disrupted functional connectivity of the pain network in fibromyalgia. Psychosom Med. 2012;74:55–62. doi: 10.1097/PSY.0b013e3182408f04.
    1. Achermann P, Rusterholz T, Durr R, Konig T, Tarokh L. Global field synchronization reveals rapid eye movement sleep as most synchronized brain state in the human EEG. R Soc Open Sci. 2016;3:160201. doi: 10.1098/rsos.160201.
    1. Hsiao FJ, et al. Altered insula-default mode network connectivity in fibromyalgia: a resting-state magnetoencephalographic study. J Headache Pain. 2017;18:89. doi: 10.1186/s10194-017-0799-x.
    1. Gram M, et al. The cortical responses to evoked clinical pain in patients with hip osteoarthritis. PLoS One. 2017;12:e0186400. doi: 10.1371/journal.pone.0186400.
    1. Schulz E, et al. Prefrontal Gamma Oscillations Encode Tonic Pain in Humans. Cereb Cortex. 2015;25:4407–4414. doi: 10.1093/cercor/bhv043.
    1. Gonzalez-Roldan, A. M., Cifre, I., Sitges, C. & Montoya, P. Altered Dynamic of EEG Oscillations in Fibromyalgia Patients at Rest. Pain Med, 10.1093/pm/pnw023 (2016).
    1. Wolfe F, et al. The American College of Rheumatology 1990 Criteria for the Classification of Fibromyalgia. Report of the Multicenter Criteria Committee. Arthritis Rheum. 1990;33:160–172. doi: 10.1002/art.1780330203.
    1. Beck AT, Ward CH, Mendelson M, Mock J, Erbaugh J. An inventory for measuring depression. Arch Gen Psychiatry. 1961;4:561–571. doi: 10.1001/archpsyc.1961.01710120031004.
    1. Beck AT, Epstein N, Brown G, Steer RA. An inventory for measuring clinical anxiety: psychometric properties. J Consult Clin Psychol. 1988;56:893–897. doi: 10.1037/0022-006X.56.6.893.
    1. Burckhardt CS, Clark SR, Bennett RM. The fibromyalgia impact questionnaire: development and validation. J Rheumatol. 1991;18:728–733.
    1. Melzack R. The short-form McGill Pain Questionnaire. Pain. 1987;30:191–197. doi: 10.1016/0304-3959(87)91074-8.
    1. Taulu S, Simola J. Spatiotemporal signal space separation method for rejecting nearby interference in MEG measurements. Phys Med Biol. 2006;51:1759–1768. doi: 10.1088/0031-9155/51/7/008.
    1. Lim M, Kim JS, Kim DJ, Chung CK. Increased Low- and High-Frequency Oscillatory Activity in the Prefrontal Cortex of Fibromyalgia Patients. Front Hum Neurosci. 2016;10:111. doi: 10.3389/fnhum.2016.00111.
    1. Kim DJ, et al. Altered white matter integrity in the corpus callosum in fibromyalgia patients identified by tract-based spatial statistical analysis. Arthritis Rheumatol. 2014;66:3190–3199. doi: 10.1002/art.38771.
    1. Oostenveld R, Fries P, Maris E, Schoffelen JM. FieldTrip: Open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data. Comput Intell Neurosci. 2011;2011:156869. doi: 10.1155/2011/156869.
    1. Slepian D. Prolate Spheroidal Wave-Functions, Fourier-Analysis, and Uncertainty. 5. Discrete Case. At&T Tech J. 1978;57:1371–1430.
    1. Gross J, et al. Dynamic imaging of coherent sources: Studying neural interactions in the human brain. Proc Natl Acad Sci USA. 2001;98:694–699. doi: 10.1073/pnas.98.2.694.
    1. Tzourio-Mazoyer N, et al. Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage. 2002;15:273–289. doi: 10.1006/nimg.2001.0978.
    1. He Y, et al. Uncovering intrinsic modular organization of spontaneous brain activity in humans. PLoS One. 2009;4:e5226. doi: 10.1371/journal.pone.0005226.
    1. Wang L, et al. Altered small-world brain functional networks in children with attention-deficit/hyperactivity disorder. Hum Brain Mapp. 2009;30:638–649. doi: 10.1002/hbm.20530.
    1. Jin SH, Jeong W, Seol J, Kwon J, Chung CK. Functional cortical hubs in the eyes-closed resting human brain from an electrophysiological perspective using magnetoencephalography. PLoS One. 2013;8:e68192. doi: 10.1371/journal.pone.0068192.
    1. Jin SH, Jeong W, Lee DS, Jeon BS, Chung CK. Preserved high-centrality hubs but efficient network reorganization during eyes-open state compared with eyes-closed resting state: an MEG study. J Neurophysiol. 2014;111:1455–1465. doi: 10.1152/jn.00585.2013.
    1. Tewarie P, et al. Cognitive and clinical dysfunction, altered MEG resting-state networks and thalamic atrophy in multiple sclerosis. PLoS One. 2013;8:e69318. doi: 10.1371/journal.pone.0069318.

Source: PubMed

3
Prenumerera