Pain Processing and Vegetative Dysfunction in Fibromyalgia: A Study by Sympathetic Skin Response and Laser Evoked Potentials

Marina de Tommaso, Katia Ricci, Giuseppe Libro, Eleonora Vecchio, Marianna Delussi, Anna Montemurno, Giuseppe Lopalco, Florenzo Iannone, Marina de Tommaso, Katia Ricci, Giuseppe Libro, Eleonora Vecchio, Marianna Delussi, Anna Montemurno, Giuseppe Lopalco, Florenzo Iannone

Abstract

Background: A dysfunction of pain processing at central and peripheral levels was reported in fibromyalgia (FM). We aimed to correlate laser evoked potentials (LEPs), Sympathetic Skin Response (SSR), and clinical features in FM patients.

Methods: Fifty FM patients and 30 age-matched controls underwent LEPs and SSR by the right hand and foot. The clinical evaluation included FM disability (FIQ) and severity scores (WPI), anxiety (SAS) and depression (SDS) scales, and questionnaires for neuropathic pain (DN4).

Results: The LEP P2 latency and amplitude and the SSR latency were increased in FM group. This latter feature was more evident in anxious patients. The LEPs habituation was reduced in FM patients and correlated to pain severity scores. In a significant number of patients (32%) with higher DN4 and FIQ scores, SSR or LEP responses were absent.

Conclusions: LEPs and SSR might contribute to clarifying the peripheral and central nervous system involvement in FM patients.

Figures

Figure 1
Figure 1
Grand average of laser evoked potentials computed in the fibromyalgia group (50) and control subjects (30). For each case the average across two consecutive series of 30 stimuli was used to compute the group LEPs.
Figure 2
Figure 2
Sympathetic skin response by right median nerve stimulation in one representative fibromyalgia patient, female, 24 years old, and one healthy subject of the same sex and age.
Figure 3
Figure 3
Groups' grand average of SSR from hand and foot in Fibromyalgia patients (50) and controls (30). For each case the average of the 5 responses was included to compute the groups' SSRs.
Figure 4
Figure 4
Linear dispersion plots between laser evoked potentials P2 and sympathetic skin response (SSR) latencies in fibromyalgia (FM) patients and controls.

References

    1. Müller W. Generalisierte Tendomyopathie (Fibromyalgie) Heidelberg: Steinkopff; 1991.
    1. Wolfe F., Clauw D. J., Fitzcharles M., et al. The American College of Rheumatology preliminary diagnostic criteria for fibromyalgia and measurement of symptom severity. Arthritis Care and Research. 2010;62(5):600–610. doi: 10.1002/acr.20140.
    1. Nielsen L. A., Henriksson K. G. Pathophysiological mechanisms in chronic musculoskeletal pain (fibromyalgia): the role of central and peripheral sensitization and pain disinhibition. Best Practice and Research: Clinical Rheumatology. 2007;21(3):465–480. doi: 10.1016/j.berh.2007.03.007.
    1. Treede R.-D., Lorenz J., Baumgärtner U. Clinical usefulness of laser-evoked potentials. Neurophysiologie Clinique. 2003;33(6):303–314. doi: 10.1016/j.neucli.2003.10.009.
    1. Cruccu G., Anand P., Attal N., et al. EFNS guidelines on neuropathic pain assessment. European Journal of Neurology. 2004;11(3):153–162. doi: 10.1111/j.1468-1331.2004.00791.x.
    1. Bromm B., Treede R. D. Pain related cerebral potentials: Late and ultralate components. International Journal of Neuroscience. 1987;33(1-2):15–23. doi: 10.3109/00207458708985926.
    1. Gibson S. J., Littlejohn G. O., Gorman M. M., Helme R. D., Granges G. Altered heat pain thresholds and cerebral event-related potentials following painful CO2 laser stimulation in subjects with fibromyalgia syndrome. Pain. 1994;58(2):185–193. doi: 10.1016/0304-3959(94)90198-8.
    1. Lorenz J. Hyperalgesia or hypervigilance? An evoked potential approach to the study of fibromyalgia syndrome. Zeitschrift fur Rheumatologie. 1998;57(2):19–22. doi: 10.1007/s003930050228.
    1. De Tommaso M. Laser-evoked potentials in primary headaches and cranial neuralgias. Expert Review of Neurotherapeutics. 2008;8(9):1339–1345. doi: 10.1586/14737175.8.9.1339.
    1. De Tommaso M., Federici A., Santostasi R., et al. Laser-evoked potentials habituation in fibromyalgia. Journal of Pain. 2011;12(1):116–124. doi: 10.1016/j.jpain.2010.06.004.
    1. Üçeyler N., Zeller D., Kahn A.-K., et al. Small fibre pathology in patients with fibromyalgia syndrome. Brain. 2013;136(6):1857–1867. doi: 10.1093/brain/awt053.
    1. de Tommaso M., Nolano M., Iannone F., et al. Update on laser-evoked potential findings in fibromyalgia patients in light of clinical and skin biopsy features. Journal of Neurology. 2014;261(3):461–472. doi: 10.1007/s00415-013-7211-9.
    1. Caro X. J., Winter E. F. The Role and Importance of Small Fiber Neuropathy in Fibromyalgia Pain. Current Pain and Headache Reports. 2015;19(12, article no. 55) doi: 10.1007/s11916-015-0527-7.
    1. Üçeyler N., Sommer C. Fibromyalgia syndrome: a disease of the small nerve fibers? Zeitschrift für Rheumatologie. 2015;74(6):490–495. doi: 10.1007/s00393-014-1546-1.
    1. Lefaucheur J.-P. The "paradox" of neuropathic pain associated with small-fiber lesions in the context of fibromyalgia. Pain. 2016;157(6):1364–1365. doi: 10.1097/j.pain.0000000000000524.
    1. Elie B., Guiheneuc P. Sympathetic skin response: normal results in different experimental conditions. Electroencephalography and Clinical Neurophysiology. 1990;76(3):258–267. doi: 10.1016/0013-4694(90)90020-K.
    1. Ulas U. H., Unlu E., Hamamcioglu K., Odabasi Z., Cakci A., Vural O. Dysautonomia in fibromyalgia syndrome: Sympathetic skin responses and RR Interval analysis. Rheumatology International. 2006;26(5):383–387. doi: 10.1007/s00296-005-0007-1.
    1. Ünlü E., Ulaş Ü. H., Gürçay E., et al. Genital sympathetic skin responses in fibromyalgia syndrome. Rheumatology International. 2006;26(11):1025–1030. doi: 10.1007/s00296-006-0131-6.
    1. Ozkan O., Yildiz M., Arslan E., et al. A Study on the Effects of Sympathetic Skin Response Parameters in Diagnosis of Fibromyalgia Using Artificial Neural Networks. Journal of medical systems. 2016;40(3):p. 54. doi: 10.1007/s10916-015-0406-0.
    1. Teoh H. L., Chow A., Wilder-Smith E. P. Skin wrinkling for diagnosing small fibre neuropathy: Comparison with epidermal nerve density and sympathetic skin response. Journal of Neurology, Neurosurgery and Psychiatry. 2008;79(7):835–837. doi: 10.1136/jnnp.2007.140947.
    1. Lefaucheur J.-P., Wahab A., Planté-Bordeneuve V., et al. Diagnosis of small fiber neuropathy: A comparative study of five neurophysiological tests. Neurophysiologie Clinique. 2015;45(6):445–455. doi: 10.1016/j.neucli.2015.09.012.
    1. Truini A., Panuccio G., Galeotti F., et al. Laser-evoked potentials as a tool for assessing the efficacy of antinociceptive drugs. European Journal of Pain. 2010;14(2):222–225. doi: 10.1016/j.ejpain.2009.05.001.
    1. Headache Classification Committee of the International Headache Society (IHS) The International Classification of Headache Disorders, 3rd edition (beta version) Cephalalgia. 2013;33(9):629–808. doi: 10.1177/0333102413485658.
    1. De Tommaso M., Federici A., Serpino C., et al. Clinical features of headache patients with fibromyalgia comorbidity. Journal of Headache and Pain. 2011;12(6):629–638. doi: 10.1007/s10194-011-0377-6.
    1. Gass J. J., Glaros A. G. Autonomic dysregulation in headache patients. Applied Psychophysiology Biofeedback. 2013;38(4):257–263. doi: 10.1007/s10484-013-9231-8.
    1. Bidari A., Hassanzadeh M., Mohabat M., Talachian E., Khoei E. M. Validation of a Persian version of the Fibromyalgia Impact Questionnaire (FIQ-P) Rheumatology International. 2014;34(2):181–189. doi: 10.1007/s00296-013-2883-0.
    1. Bouhassira D., Attal N., Alchaar H., et al. Comparison of pain syndromes associated with nervous or somatic lesions and development of a new neuropathic pain diagnostic questionnaire (DN4) Pain. 2005;114(1-2):29–36. doi: 10.1016/j.pain.2004.12.010.
    1. Di Stefano G., Celletti C., Baron R., et al. Central sensitization as the mechanism underlying pain in joint hypermobility syndrome/Ehlers–Danlos syndrome, hypermobility type. European Journal of Pain (United Kingdom) 2016;20(8):1319–1325. doi: 10.1002/ejp.856.
    1. Zung W. W. A self-rating depression scale. Archives of General Psychiatry. 1965;12:63–70. doi: 10.1001/archpsyc.1965.01720310065008.
    1. Zung WWK. SAS, Self-Rating Anxiety Scale. In: Guy W (ed) ECDEU assessment manual for psychopharmacology, revised edn. National Institute of Health, Psycho-pharmacology Research Branch, Rockville, MD, 1976 pp 337–340.
    1. Shahani B. T., Halperin J. J., Boulu P., Cohen J. Sympathetic skin response--a method of assessing unmyelinated axon dysfunction in peripheral neuropathies. Journal of Neurology, Neurosurgery & Psychiatry. 1984;47(5):536–542. doi: 10.1136/jnnp.47.5.536.
    1. Valeriani M., Rambaud L., Mauguière F. Scalp topography and dipolar source modelling of potentials evoked by CO2 laser stimulation of the hand. Electroencephalography and Clinical Neurophysiology. 1996;100(4):343–353. doi: 10.1016/0168-5597(96)95625-7.
    1. de Tommaso M., Libro G., Guido M., Losito L., Lamberti P., Livrea P. Habituation of single CO2 laser-evoked responses during interictal phase of migraine. Journal of Headache and Pain. 2005;6(4):195–198. doi: 10.1007/s10194-005-0183-0.
    1. Kimura J. Electrodiagnosis in Diseases of Nerve and Muscle. Oxford University Press; 2013.
    1. de Tommaso M., Ricci K., Montemurno A., Vecchio E. Age-related changes in laser-evoked potentials following trigeminal and hand stimulation in healthy subjects. European Journal of Pain (United Kingdom) 2017 doi: 10.1002/ejp.1010.
    1. Garcia-Larrea L., Frot M., Valeriani M. Brain generators of laser-evoked potentials: from dipoles to functional significance. Neurophysiologie Clinique. 2003;33(6):279–292. doi: 10.1016/j.neucli.2003.10.008.
    1. De Tommaso M., Guido M., Libro G., et al. Topographic and dipolar analysis of laser-evoked potentials during migraine attack. Headache. 2004;44(10):947–960. doi: 10.1111/j.1526-4610.2004.04188.x.
    1. Truini A., Gerardi M. C., Di Stefano G., et al. Hyperexcitability in pain matrices in patients with fibromyalgia. Clinical and Experimental Rheumatology. 2015;33(1) supplement 88:s68–s72.
    1. Ozgocmen S., Yoldas T., Yigiter R., Kaya A., Ardicoglu O. R-R Interval Variation and Sympathetic Skin Response in Fibromyalgia. Archives of Medical Research. 2006;37(5):630–634. doi: 10.1016/j.arcmed.2005.11.008.
    1. Martínez-Martínez L.-A., Mora T., Vargas A., Fuentes-Iniestra M., Martínez-Lavín M. Sympathetic nervous system dysfunction in fibromyalgia, chronic fatigue syndrome, irritable bowel syndrome, and interstitial cystitis: a review of case-control studies. Journal of Clinical Rheumatology. 2014;20(3):146–150. doi: 10.1097/rhu.0000000000000089.
    1. Macefield V. G., James C., Henderson L. A. Identification of sites of sympathetic outflow at rest and during emotional arousal: Concurrent recordings of sympathetic nerve activity and fMRI of the brain. International Journal of Psychophysiology. 2013;89(3):451–459. doi: 10.1016/j.ijpsycho.2013.06.002.
    1. Nagai Y., Critchley H. D., Featherstone E., Trimble M. R., Dolan R. J. Activity in ventromedial prefrontal cortex covaries with sympathetic skin conductance level: a physiological account of a “default mode” of brain function. NeuroImage. 2004;22(1):243–251. doi: 10.1016/j.neuroimage.2004.01.019.
    1. Seifert F., Schuberth N., De Col R., Peltz E., Nickel F. T., Maihöfner C. Brain activity during sympathetic response in anticipation and experience of pain. Human Brain Mapping. 2013;34(8):1768–1782. doi: 10.1002/hbm.22035.
    1. Hoeldtke R. D., Davis K. M., Hshieh P. B., Gaspar S. R., Dworkin G. E. Autonomic surface potential analysis: Assessment of reproducibility and sensitivity. Muscle & Nerve. 1992;15(8):926–931. doi: 10.1002/mus.880150810.
    1. Aramaki S., Kira Y., Hirasawa Y. A study of the normal values and habituation phenomenon of sympathetic skin response. American Journal of Physical Medicine and Rehabilitation. 1997;76(1):2–7. doi: 10.1097/00002060-199701000-00002.
    1. Cariga P., Catley M., Mathias C. J., Ellaway P. H. Characteristics of habituation of the sympathetic skin response to repeated electrical stimuli in man. Clinical Neurophysiology. 2001;112(10):1875–1880. doi: 10.1016/S1388-2457(01)00647-2.
    1. Ellaway P. H., Kuppuswamy A., Nicotra A., Mathias C. J. Sweat production and the sympathetic skin response: Improving the clinical assessment of autonomic function. Autonomic Neuroscience: Basic and Clinical. 2010;155(1-2):109–114. doi: 10.1016/j.autneu.2010.01.008.
    1. Toyokura M. Within-subject consistency of sympathetic-skin-response waveform across different modalities of stimulation. Autonomic Neuroscience: Basic and Clinical. 2012;169(2):135–138. doi: 10.1016/j.autneu.2012.06.003.
    1. Breimhorst M., Hondrich M., Rebhorn C., May A., Birklein F. Sensory and sympathetic correlates of heat pain sensitization and habituation in men and women. European Journal of Pain (United Kingdom) 2012;16(9):1281–1292. doi: 10.1002/j.1532-2149.2012.00133.x.
    1. Yunus M. B. Fibromyalgia and overlapping disorders: the unifying concept of central sensitivity syndromes. Seminars in Arthritis and Rheumatism. 2007;36(6):339–356. doi: 10.1016/j.semarthrit.2006.12.009.
    1. Doppler K., Rittner H. L., Deckart M., Sommer C. Reduced dermal nerve fiber diameter in skin biopsies of patients with fibromyalgia. Pain. 2015;156(11):2319–2325. doi: 10.1097/j.pain.0000000000000285.
    1. Gøransson L. G., Brun J. G., Harboe E., Mellgren S. I., Omdal R. Intraepidermal nerve fiber densities in chronic inflammatory autoimmune diseases. Archives of Neurology. 2006;63(10):1410–1413. doi: 10.1001/archneur.63.10.1410.
    1. Leinders M., Doppler K., Klein T., et al. Increased cutaneous miR-let-7d expression correlates with small nerve fiber pathology in patients with fibromyalgia syndrome. Pain. 2016;157(11):2493–2503. doi: 10.1097/j.pain.0000000000000668.

Source: PubMed

3
Prenumerera