Transcranial Direct Current Stimulation to Improve the Dysfunction of Descending Pain Modulatory System Related to Opioids in Chronic Non-cancer Pain: An Integrative Review of Neurobiology and Meta-Analysis

Maxciel Zortea, Leticia Ramalho, Rael Lopes Alves, Camila Fernanda da Silveira Alves, Gilberto Braulio, Iraci Lucena da Silva Torres, Felipe Fregni, Wolnei Caumo, Maxciel Zortea, Leticia Ramalho, Rael Lopes Alves, Camila Fernanda da Silveira Alves, Gilberto Braulio, Iraci Lucena da Silva Torres, Felipe Fregni, Wolnei Caumo

Abstract

Background: Opioid long-term therapy can produce tolerance, opioid-induced hyperalgesia (OIH), and it induces dysfunction in pain descending pain inhibitory system (DPIS). Objectives: This integrative review with meta-analysis aimed: (i) To discuss the potential mechanisms involved in analgesic tolerance and opioid-induced hyperalgesia (OIH). (ii) To examine how the opioid can affect the function of DPIS. (ii) To show evidence about the tDCS as an approach to treat acute and chronic pain. (iii) To discuss the effect of tDCS on DPIS and how it can counter-regulate the OIH. (iv) To draw perspectives for the future about the tDCS effects as an approach to improve the dysfunction in the DPIS in chronic non-cancer pain. Methods: Relevant published randomized clinical trials (RCT) comparing active (irrespective of the stimulation protocol) to sham tDCS for treating chronic non-cancer pain were identified, and risk of bias was assessed. We searched trials in PubMed, EMBASE and Cochrane trials databases. tDCS protocols accepted were application in areas of the primary motor cortex (M1), dorsolateral prefrontal cortex (DLPFC), or occipital area. Results: Fifty-nine studies were fully reviewed, and 24 with moderate to the high-quality methodology were included. tDCS improved chronic pain with a moderate effect size [pooled standardized mean difference; -0.66; 95% confidence interval (CI) -0.91 to -0.41]. On average, active protocols led to 27.26% less pain at the end of treatment compared to sham [95% CI; 15.89-32.90%]. Protocol varied in terms of anodal or cathodal stimulation, areas of stimulation (M1 and DLPFC the most common), number of sessions (from 5 to 20) and current intensity (from 1 to 2 mA). The time of application was 20 min in 92% of protocols. Conclusion: In comparison with sham stimulation, tDCS demonstrated a superior effect in reducing chronic pain conditions. They give perspectives that the top-down neuromodulator effects of tDCS are a promising approach to improve management in refractory chronic not-cancer related pain and to enhance dysfunctional neuronal circuitries involved in the DPIS and other pain dimensions and improve pain control with a therapeutic opioid-free. However, further studies are needed to determine individualized protocols according to a biopsychosocial perspective.

Keywords: descending pain inhibitory system; hyperalgesia; opioid; pain; tDCS.

Copyright © 2019 Zortea, Ramalho, Alves, Alves, Braulio, Torres, Fregni and Caumo.

Figures

Figure 1
Figure 1
Cell mechanisms of opioids action. In presynaptic neuron have inhibition of intracellular calcium influx and impairment in neurotransmitters release. In a postsynaptic neuron, cascade events induce to hyperpolarization state. cAMP, cyclic adenosine monophosphate; RPBE, response of cAMP to the protein binding element; Ca2+, calcium; K+, potassium; Na+, sodium; +, excitatory; –, inhibitory. 1. Inhibition of adenylate cyclase reduces the cyclic adenosine monophosphate (cAMP); and second messengers. 2. With this, cAMP reduction allow the openness of the potassium channels and promote the postsynaptic cell hyperpolarization. 3. The concomitant activation of presynaptic opioid receptors of C and Aδ fiber inhibits indirectly calcium influx, which decreases cAMP levels and blocks neurotransmitters release—glutamate, substance P and calcitonin gene-related peptide (CGRP).
Figure 2
Figure 2
Schematic representation of neuronal mechanisms underlying opioid tolerance development. Tolerance event: Decreases membrane potential threshold, increases the action-potential duration (APD), and increases neurotransmitter release. APD, action-potential duration; IEG, immediate early genes (c-Fos, FosB); PKA, protein Kinase A; CREB, cAMP response element-binding protein; pCREB, phosphorylated CREB protein; Gi/o, inhibitory G protein; Gs, excitatory G protein; CaMK-II, calcium/calmodulin dependent protein kinase II; PLA2, phospholipase A2; NO, nitric oxide; nNOS, neuronal nitric oxide synthase; HPETE, hydroperoxyeicosatetraenoic acid; +, excitatory; –, inhibitory.
Figure 3
Figure 3
Mechanisms engaged in the formation and maintenance of OIH. OIH, Hyperalgesia induced by opioids; BDNF, brain derived neurotrophic factor; Cx3Cl1, chemokine Cx3Cl1; EAAC1, glutamate transporter EAAC1; GABAR, gamma aminobutyric acid receptor; GRK, G protein coupled receptor kinase; IL1β, interleukin beta; IP3, inositol triphosphate; KCC2, K+/Cl cotransporter 2; LTP, long-term potentiation; MOR, mu-opioid receptor; mTOR, mammalian target of rapamycin; NO, nitric oxide; NOS, nitric oxide synthase; NK1, neurokinin 1 receptor; NMDAR, N-methyl-D-aspartic acid receptor; PKC, protein kinase C; SP, substance P; TNFα, tumor necrosis factor alpha; TrkB, tyrosine kinase B; TRPV1, transient receptor potential vanilloid 1; Ca2+, calcium; Cl−, chlorine; +, excitatory; –, inhibitory. (1) Morphine activates the neuronal MOR and generates an intracellular process that culminates in the OIH; (2) Signaling mTOR is activated by morphine engaged in neuroexcitation that lead to OIH; (3) The synaptic concentration of glutamate is elevated when the glutamate transporter EEAC1 are blocked by morphine. (4) Glutamate coupling in your NMDA receptors activates the calcium influx inducing the LTP that lead an OIH. (5) The BDNF receptor TrkB reduces the action of the cotransporter KCC2 evolved in ions chlorine homeostasis that modifies the inhibitory function of GABA for an excitatory function that which promote OIH. (6) Morphine also activates the glial cells and neurons that generate pro-inflammatory cytokines (IL1β and TNFα) that induce LTP and lead to OIH.
Figure 4
Figure 4
Areas of the brain that induction the descending pain inhibitory system composed by PAG-RVM-spinal cord pathway. TH, Thalamus; HT, hypothalamus; AMY, amygdala; NCF, nucleus cuneiforms; PAG, periaqueductal gray matter; DLPT, dorsolateral pontine tegmentum; RVM, rostral ventromedial medulla. (1) Cortical regions as cingulate and insula cortex as also the subcortical regions how the thalamus, hypothalamus, and amygdala project signals for the PAG, gray substance located in the midbrain, that receives stimulus and send inhibitory impulses across the medial and lateral tracts of the CNS. (2) Medial tract: inhibitory and facilitatory influence of the neurotransmitter serotonin in the pain activeness. (3) Lateral tract: dominant activity of neurotransmitter noradrenaline. (4) Fired inhibitory stimulus go down throughout dorsal horn of the spinal cord segment. The painful stimuli are sent to the second order neurons. Endorphins, noradrenaline, and serotonin, inhibitory neurotransmitters, are released activation of the inhibitory interneurons.
Figure 5
Figure 5
M1, Primary motor cortex; DLPFC, dorsolateral prefrontal cortex; S1, primary somatosensory cortex; S2, secondary somatosensory cortex; PFC, prefrontal cortex; ACC, anterior cingulate cortex; PCC, posterior cingulate cortex; INS, Insula; TH–VPL, thalamus-ventral posterolateral nucleus; TH-MD, thalamus-medial dorsal nucleus; HT, hypothalamus; AMY, Amygdala; PAG, periaqueductal gray matter;RVM, rostral ventromedial medulla; NMDAR, N-methyl-D-aspartate receptor; AMPAR, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor; Trk, Tropomyosin receptor kinase; Ca2+, calcium; K+, potassium; Na+, sodium; Mg2, magnesium; +, excitatory; -, inhibitory; L-LTP, late long-term potentiation. (1) The anodal tDCS increases the intracellular Ca2+ flow that releases more neurotransmitters. (2) The positive regulation of neurotransmitters facilitates the openness of AMPA channels and indirectly of NMDA channels, which characterizes the long-term potentiation (LTP). (3) Activation of tropomyosin receptor (Trk) indicates the role of brain-derived neurotrophic factor (BDNF) in the anodal tDCS; its effect increases the production of the synaptic vesicles and the neurotransmitter release. (4) Increase of Ca2+ flow promotes the release of neurotrophic factors for the synaptic cleft. (5) Post-synaptic Trk receptor induces the late LTP (L-LTP) and favors the openness of the NMDA channels, which reinforces the L-LTP. (6) Both L-LTP and L-LTD are highly dependent on the modification of gene expression.
Figure 6
Figure 6
Flowchart of the systematized search.
Figure 7
Figure 7
Forest plot of the effects of tDCS on pain levels for all studies reviewed (n = 23).
Figure 8
Figure 8
Forest plot of the effects of anodal M1 tDCS on pain levels (n = 20).
Figure 9
Figure 9
Forest plot of the effects of anodal DLPFC tDCS on pain levels (n = 4).
Figure 10
Figure 10
Assessment of risk of bias from the reviewed studies (n = 24).

References

    1. Abdallah C. G., Geha P. (2017). Chronic pain and chronic stress: two sides of the same coin? Chronic Stress 1:247054701770476. 10.1177/2470547017704763
    1. André-Obadia N., Mertens P., Lelekov-Boissard T., Afif A., Magnin M., Garcia-Larrea L. (2014). Is life better after motor cortex stimulation for pain control? Results at long-term and their prediction by preoperative rTMS. Pain Phys. 17, 53–62.
    1. Andrew Moore R., Eccleston C., Derry S., Wiffen P., Bell R., Straube S., et al. . (2010). Evidence in chronic pain–establishing best practice in the reporting of systematic reviews. Pain 150, 386–9. 10.1016/j.pain.2010.05.011
    1. Antal A., Kriener N., Lang N., Boros K. (2011). Cathodal transcranial direct current stimulation of the visual cortex in the prophylactic treatment of migraine. Cephalalgia 31, 820–828. 10.1177/0333102411399349
    1. Antal A., Terney D., Kühnl S., Paulus W. (2010). Anodal transcranial direct current stimulation of the motor cortex ameliorates chronic pain and reduces short intracortical inhibition. J. Pain Symptom Manage. 39, 890–903. 10.1016/j.jpainsymman.2009.09.023
    1. Arias B., Aguilera M., Moya J., Sáiz P. A., Villa H., Ibáñez M. I., et al. . (2012). The role of genetic variability in the SLC6A4, BDNF and GABRA6 genes in anxiety-related traits. Acta Psychiatr. Scand. 125, 194–202. 10.1111/j.1600-0447.2011.01764.x
    1. As-Sanie S., Kim J., Schmidt-Wilcke T., Sundgren P. C., Clauw D. J., Napadow V., et al. . (2016). Functional connectivity is associated with altered brain chemistry in women with endometriosis-associated chronic pelvic pain. J. Pain 17, 1–13. 10.1016/j.jpain.2015.09.008
    1. Auvichayapat P., Janyacharoen T., Rotenberg A., Tiamkao S., Krisanaprakornkit T., Sinawat S., et al. . (2012). Migraine prophylaxis by anodal transcranial direct current stimulation, a randomized, placebo-controlled trial. J. Med. Assoc. Thai. 95, 1003–1012.
    1. Axelrod J., Tomchick R. (1958). Enzymatic O-methylation of epinephrine and other catechols. Enzyme 233, 702–705.
    1. Ayache S. S., Palm U., Chalah M. A., Al-Ani T., Brignol A., Abdellaoui M., et al. . (2016). Prefrontal tDCS decreases pain in patients with multiple sclerosis. Front. Neurosci. 10:147. 10.3389/fnins.2016.00147
    1. Barr M. S., Farzan F., Wing V. C., George T. P., Fitzgerald P. B., Daskalakis Z. J. (2011). Repetitive transcranial magnetic stimulation and drug addiction. Int. Rev. Psychiatry 23, 454–466. 10.3109/09540261.2011.618827
    1. Basbaum A. I., Fields H. L. (1979). The origin of descending pathways in the dorsolateral funiculus of the spinal cord of the cat and rat: further studies on the anatomy of pain modulation. J. Comp. Neurol. 187, 513–531. 10.1002/cne.901870304
    1. Benedetti F. (2005). Neurobiological mechanisms of the placebo effect. J. Neurosci. 25, 10390–10402. 10.1523/JNEUROSCI.3458-05.2005
    1. Berta T., Liu T., Liu Y. C., Xu Z. Z., Ji R. R. (2012). Acute morphine activates satellite glial cells and up-regulates IL-1β in dorsal root ganglia in mice via matrix metalloprotease-9. Mol. Pain 8:18. 10.1186/1744-8069-8-18
    1. Bie B., Fields H. L., Williams J. T., Pan Z. Z. (2003). Roles of α1 - and α2 -adrenoceptors in the nucleus raphe magnus in opioid analgesia and opioid abstinence-induced hyperalgesia. J. Neurosci. 23, 7950–7957. 10.1523/JNEUROSCI.23-21-07950.2003
    1. Bocci T., De Carolis G., Ferrucci R., Paroli M., Mansani F., Priori A., et al. . (2019). Cerebellar Transcranial Direct Current Stimulation (ctDCS) ameliorates phantom limb pain and non-painful phantom limb sensations. Cerebellum 18, 527–535. 10.1007/s12311-019-01020-w
    1. Boggio P. S., Zaghi S., Lopes M., Fregni F. (2008). Modulatory effects of anodal transcranial direct current stimulation on perception and pain thresholds in healthy volunteers. Eur. J. Neurol. 15, 1124–1130. 10.1111/j.1468-1331.2008.02270.x
    1. Borckardt J. J., Reeves S. T., Milliken C., Carter B., Epperson T. I., Gunselman R. J., et al. . (2017). Prefrontal versus motor cortex transcranial direct current stimulation (tDCS) effects on post-surgical opioid use. Brain Stimul. 10, 1096–1101. 10.1016/j.brs.2017.09.006
    1. Borckardt J. J., Reeves S. T., Robinson S. M., May J. T., Epperson T. I., Gunselman R. J., et al. . (2013). Transcranial Direct Current Stimulation (tDCS) reduces postsurgical opioid consumption in Total Knee Arthroplasty (TKA). Clin. J. Pain 29, 925–928. 10.1097/AJP.0b013e31827e32be
    1. Borckardt J. J., Romagnuolo J., Reeves S. T., Madan A., Frohman H., Beam W., et al. . (2011). Feasibility, safety, and effectiveness of transcranial direct current stimulation for decreasing post-ERCP pain: a randomized, sham-controlled, pilot study. Gastrointest. Endosc. 73, 1158–1164. 10.1016/j.gie.2011.01.050
    1. Botvinick M., Braver T. (2015). Motivation and cognitive control: from behavior to neural mechanism. Annu. Rev. Psychol. 66, 83–113. 10.1146/annurev-psych-010814-015044
    1. Brangioni M. C. V., Pereira D. A., Thibaut A., Fregni F., Brasil-Neto J. P., Boechat-Barros R. (2018). Effects of prefrontal transcranial direct current stimulation and motivation to quit in tobacco smokers: a randomized, sham controlled, double-blind trial. Front. Pharmacol. 9:14 10.3389/fphar.2018.00014
    1. Braulio G., Passos S. C., Leite F., Schwertner A., Stefani L. C., Palmer A. C. S., et al. . (2018). Effects of transcranial direct current stimulation block remifentanil-induced hyperalgesia: a randomized, double-blind clinical trial. Front. Pharmacol. 9:94. 10.3389/fphar.2018.00094
    1. Brietzke A. P., Antunes L. C., Carvalho F., Elkifury J., Gasparin A., Sanches P. R. S., et al. . (2019). Potency of descending pain modulatory system is linked with peripheral sensory dysfunction in fibromyalgia. Medicine 98:e13477. 10.1097/MD.0000000000013477
    1. Brietzke A. P., Rozisky J. R., Dussan-Sarria J. A., Deitos A., Laste G., Hoppe P. F. T., et al. . (2016). Neuroplastic effects of transcranial direct current stimulation on painful symptoms reduction in chronic hepatitis C: a phase II randomized, double blind, sham controlled trial. Front. Neurosci. 9:498. 10.3389/fnins.2015.00498
    1. Busse J. W., Craigie S., Juurlink D. N., Buckley D. N., Wang L., Couban R. J., et al. . (2017). Guideline for opioid therapy and chronic noncancer pain. CMAJ 189, E659–E666. 10.1503/cmaj.170363
    1. Butour J., Moisand C., Mollereau C., Meunier J. (1998). [Phe1psi(CH2-NH)Gly2]nociceptin-(1-13)-NH2 is an agonist of the nociceptin (ORL1) receptor. Eur. J. Pharmacol. 349, R5–R6. 10.1016/S0014-2999(98)00273-8
    1. Cardinal T. M., Antunes L. C., Brietzke A. P., Parizotti C. S., Carvalho F., De Souza A. (2019). Differential neuroplastic changes in fibromyalgia and depression indexed by up-regulation of motor cortex inhibition and disinhibition of the descending pain system : an exploratory study. Front. Hum. Neurosci. 13:138. 10.3389/fnhum.2019.00138
    1. Caumo W., Antunes L., Lorenzzi Elkfury J., Herbstrith E., Busanello Sipmann R., Souza A., et al. . (2017). The Central Sensitization Inventory validated and adapted for a Brazilian population: psychometric properties and its relationship with brain-derived neurotrophic factor. J. Pain Res. 10, 2109–2122. 10.2147/JPR.S131479
    1. Chater T. E., Goda Y. (2014). The role of AMPA receptors in postsynaptic mechanisms of synaptic plasticity. Front. Cell. Neurosci. 8:401. 10.3389/fncel.2014.00401
    1. Chen J., Lipska B. K., Halim N., Ma Q. D., Matsumoto M., Melhem S., et al. . (2004). Functional analysis of genetic variation in catechol-O-Methyltransferase (COMT): effects on mRNA, protein, and enzyme activity in postmortem human brain. Am. J. Hum. Genet. 75, 807–821. 10.1086/425589
    1. Cheng C. Y., Hong C. J., Yu Y. W. Y., Chen T. J., Wu H. C., Tsai S. J. (2005). Brain-derived neurotrophic factor (Val66Met) genetic polymorphism is associated with substance abuse in males. Mol. Brain Res. 140, 86–90. 10.1016/j.molbrainres.2005.07.008
    1. Choi Y. H., Jung S. J., Lee C. H., Lee S. U. (2014). Additional effects of transcranial direct-current stimulation and trigger-point injection for treatment of myofascial pain syndrome: a pilot study with randomized, single-blinded trial. J. Altern. Complement. Med. 20, 698–704. 10.1089/acm.2013.0243
    1. Chu L. F., Dairmont J., Zamora A. K., Young C. A., Angst M. S. (2011). The endogenous opioid system is not involved in modulation of opioid-induced hyperalgesia. J. Pain 12, 108–115. 10.1016/j.jpain.2010.05.006
    1. Clark V. P., Coffman B. A., Trumbo M. C., Gasparovic C. (2011). Transcranial direct current stimulation (tDCS) produces localized and specific alterations in neurochemistry: a 1H magnetic resonance spectroscopy study. Neurosci. Lett. 500, 67–71. 10.1016/j.neulet.2011.05.244
    1. Compton P., Canamar C. P., Hillhouse M., Ling W. (2012). Hyperalgesia in heroin dependent patients and the effects of opioid substitution therapy. J. Pain 13, 401–409. 10.1016/j.jpain.2012.01.001
    1. Conti C. L., Nakamura-Palacios E. M. (2014). Bilateral transcranial direct current stimulation over dorsolateral prefrontal cortex changes the drug-cued reactivity in the anterior cingulate cortex of crack-cocaine addicts. Brain Stimul. 7, 130–132. 10.1016/j.brs.2013.09.007
    1. Dall'Agnol L., Medeiros L. F., Torres I. L. S., Deitos A., Brietzke A., Laste G., et al. . (2014). Repetitive transcranial magnetic stimulation increases the corticospinal inhibition and the brain-derived neurotrophic factor in chronic myofascial pain syndrome: an explanatory double-blinded, randomized, sham-controlled trial. J. Pain 15, 845–855. 10.1016/j.jpain.2014.05.001
    1. Dang V. C., Christie M. J. (2012). Themed section : molecular pharmacology of GPCRs Mechanisms of rapid opioid receptor desensitization, resensitization and tolerance in brain neurons. Br. J. Pharmacol. 165, 1704–1716. 10.1111/j.1476-5381.2011.01482.x
    1. Darnall B. D. (2012). Sex differences in long-term opioid use. Arch. Intern. Med. 172:431. 10.1001/archinternmed.2011.1741
    1. de Araujo C. M., Zugman A., Swardfager W., Belangero S. I. N., Ota V. K., Spindola L. M., et al. . (2018). Effects of the brain-derived neurotropic factor variant Val66Met on cortical structure in late childhood and early adolescence. J. Psychiatr. Res. 98, 51–58. 10.1016/j.jpsychires.2017.12.008
    1. De Raedt R., Leyman L., Baeken C., Van Schuerbeek P., Luypaert R., Vanderhasselt M. A., et al. . (2010). Neurocognitive effects of HF-rTMS over the dorsolateral prefrontal cortex on the attentional processing of emotional information in healthy women: an event-related fMRI study. Biol. Psychol. 85, 487–495. 10.1016/j.biopsycho.2010.09.015
    1. Del Missier F., Mäntylä T., de Bruin W. B. (2010). Executive functions in decision making: an individual differences approach. Think. Reason. 16, 69–97. 10.1080/13546781003630117
    1. Dennis B. B., Bawor M., Naji L., Chan C. K., Varenbut J., Paul J., et al. . (2015). Impact of chronic pain on treatment prognosis for patients with opioid use disorder : a systematic review and meta-analysis. Subst. Abuse 9, 59–80. 10.4137/SART.S30120
    1. Dixon M. L., Thiruchselvam R., Todd R., Christoff K. (2017). Emotion and the prefrontal cortex: an integrative review. Psychol. Bull. 143, 1033–1081. 10.1037/bul0000096
    1. Dowell D., Haegerich T. M., Chou R. (2016). CDC guideline for prescribing opioids for chronic pain—United States, 2016. JAMA 315:1624. 10.1001/jama.2016.1464
    1. Dubois P. E., Ossemann M., de Fays K., De Bue P., Gourdin M., Jamart J., et al. . (2013). Postoperative analgesic effect of transcranial direct current stimulation in lumbar spine surgery. Clin. J. Pain 29, 696–701. 10.1097/AJP.0b013e31826fb302
    1. Edwards R. R., Dworkin R. H., Turk D. C., Angst M. S., Dionne R., Freeman R., et al. . (2016). Patient phenotyping in clinical trials of chronic pain treatments: IMMPACT recommendations. Pain 157, 1851–1871. 10.1097/j.pain.0000000000000602
    1. Egan M. F., Kojima M., Callicott J. H., Goldberg T. E., Kolachana B. S., Bertolino A., et al. . (2003). The BDNF val66met polymorphism affects activity-dependent secretion of BDNF and human memory and hippocampal function. Cell 112, 257–269. 10.1016/S0092-8674(03)00035-7
    1. Eippert F., Bingel U., Schoell E. D., Yacubian J., Klinger R., Lorenz J., et al. . (2009). Activation of the opioidergic descending pain control system underlies placebo analgesia. Neuron 63, 533–543. 10.1016/j.neuron.2009.07.014
    1. Fagerlund A. J., Hansen O. A., Aslaksen P. M. (2015). Transcranial direct current stimulation as a treatment for patients with fibromyalgia : a randomized controlled trial. Pain 156, 62–71. 10.1016/j.pain.0000000000000006
    1. Falcone M., Bernardo L., Ashare R. L., Hamilton R., Faseyitan O., McKee S. A., et al. . (2016). Transcranial direct current brain stimulation increases ability to resist smoking. Brain Stimul. 9, 191–196. 10.1016/j.brs.2015.10.004
    1. Fecteau S., Agosta S., Hone-Blanchet A., Fregni F., Boggio P., Ciraulo D., et al. . (2014). Modulation of smoking and decision-making behaviors with transcranial direct current stimulation in tobacco smokers: a preliminary study. Drug Alcohol Depend. 140, 78–84. 10.1016/j.drugalcdep.2014.03.036
    1. Ferrini F., Trang T., Mattioli T. A., Laffray S., Del'Guidice T., Lorenzo L. E., et al. . (2013). Morphine hyperalgesia gated through microglia-mediated disruption of neuronal Cl homeostasis. Nat. Neurosci. 16, 183–192. 10.1038/nn.3295
    1. Fields H. (2004). State-dependent opioid control of pain. Nat. Rev. Neurosci. 5, 565–575. 10.1038/nrn1431
    1. Fillingim R. B., Bruehl S., Dworkin R. H., Dworkin S. F., Loeser J. D., Turk D. C., et al. . (2014). The ACTTION-American Pain Society Pain Taxonomy (AAPT): an evidence-based and multidimensional approach to classifying chronic pain conditions. J. Pain 15, 241–9. 10.1016/j.jpain.2014.01.004
    1. Florence C. S., Zhou C., Luo F., Xu L. (2016). The economic burden of prescription opioid overdose, abuse, and dependence in the United States, 2013. Med. Care 54, 901–906. 10.1097/MLR.0000000000000625
    1. Fregni F., Gimenes R., Valle A. C., Ferreira M. J. L., Rocha R. R., Natalle L., et al. . (2006). A randomized, sham-controlled, proof of principle study of transcranial direct current stimulation for the treatment of pain in fibromyalgia. Arthr. Rheum. 54, 3988–3998. 10.1002/art.22195
    1. Fregni L. P., Fecteau S., Nitsche M. A., Pascual-Leone A. B. P. (2008). Cortical stimulation of the prefrontal cortex with transcranial direct current stimulation reduces cue-provoked smoking craving: a randomized, sham-controlled study. Clin. Psychiatry 69, 32–40. 10.4088/JCP.v69n0105
    1. Frielingsdorf H., Bath K. G., Soliman F., Difede J., Casey B. J., Lee F. S. (2010). Variant brain-derived neurotrophic factor Val66Met endophenotypes: implications for posttraumatic stress disorder. Ann. N. Y. Acad. Sci. 1208, 150–157. 10.1111/j.1749-6632.2010.05722.x
    1. Fritsch B., Reis J., Martinowich K., Schambra H. M., Ji Y., Cohen L. G., et al. . (2010). Direct current stimulation promotes BDNF-dependent synaptic plasticity: potential implications for motor learning. Neuron 66, 198–204. 10.1016/j.neuron.2010.03.035
    1. Gallucci A., Lucena P. H., Martens G., Thibaut A., Fregni F. (2019). Transcranial direct current stimulation to prevent and treat surgery-induced opioid dependence: a systematic review. Pain Manag. 9, 93–106. 10.2217/pmt-2018-0053
    1. Garraway S. M., Huie J. R. (2016). Spinal plasticity and behavior: BDNF-induced neuromodulation in uninjured and injured spinal cord. Neural Plast. 2016:9857201. 10.1155/2016/9857201
    1. Geha P. Y., Baliki M. N., Harden R. N., Bauer W. R., Todd B., Apkarian A. V. (2009). The brain in chronic CRPS pain: abnormal gray-white matter interactions in emotional and autonomic regions. Neuron 60, 570–581. 10.1016/j.neuron.2008.08.022
    1. Gelernter J., Kranzler H. R., Sherva R., Koesterer R., Almasy L., Zhao H., et al. . (2014). Genome-wide association study of opioid dependence: multiple associations mapped to calcium and potassium pathways. Biol. Psychiatry 76, 66–74. 10.1016/j.biopsych.2013.08.034
    1. Gewandter J. S., Dworkin R. H., Turk D. C., Farrar J. T., Fillingim R. B., Gilron I., et al. . (2015). Research design considerations for chronic pain prevention clinical trials. Pain 156, 1184–1197. 10.1097/j.pain.0000000000000191
    1. Glaser J., Reeves S. T., Stoll W. D., Epperson T. I., Hilbert M., Madan A., et al. . (2016). Motor/prefrontal transcranial direct current stimulation (tDCS) following lumbar surgery reduces postoperative analgesia use. Spine 41, 835–839. 10.1097/BRS.0000000000001525
    1. González-Castro T. B., Salas-Magaña M., Juárez-Rojop I. E., López-Narváez M. L., Tovilla-Zárate C. A., Hernández-Díaz Y. (2017). Exploring the association between BDNF Val66Met polymorphism and suicidal behavior: meta-analysis and systematic review. J. Psychiatr. Res. 94, 208–217. 10.1016/j.jpsychires.2017.07.020
    1. Grace P. M., Hutchinson M. R., Maier S. F., Watkins L. R. (2014). Pathological pain and the neuroimmune interface. Nat. Rev. Immunol. 14, 217–231. 10.1038/nri3621
    1. Greenwald M. K., Steinmiller C. L., Sliwerska E., Lundahl L., Burmeister M. (2013). BDNF Val66Met genotype is associated with drug-seeking phenotypes in heroin-dependent individuals: a pilot study. Addict. Biol. 18, 836–845. 10.1111/j.1369-1600.2011.00431.x
    1. Greenwood P. M., Blumberg E. J., Scheldrup M. R. (2018). Hypothesis for cognitive effects of transcranial direct current stimulation: externally- and internally-directed cognition. Neurosci. Biobehav. Rev. 86, 226–238. 10.1016/j.neubiorev.2017.11.006
    1. Gussew A., Rzanny R., Güllmar D., Scholle H., Reichenbach J. R. (2011). NeuroImage H-MR spectroscopic detection of metabolic changes in pain processing brain regions in the presence of non-speci fi c chronic low back pain. Neuroimage 54, 1315–1323. 10.1016/j.neuroimage.2010.09.039
    1. Haddad J. J. (2002). Cytokines and related receptor-mediated signaling pathways. Biochem. Biophys. Res. Commun. 297, 700–713. 10.1016/S0006-291X(02)02287-8
    1. Hagenacker T., Bude V., Naegel S., Holle D., Katsarava Z., Diener H. C., et al. . (2014). Patient-conducted anodal transcranial direct current stimulation of the motor cortex alleviates pain in trigeminal neuralgia. J. Headache Pain 15, 1–9. 10.1186/1129-2377-15-78
    1. Hariri A. R., Goldberg T. E., Mattay V. S., Kolachana B. S., Callicott J. H., Egan M. F., et al. . (2003). Brain-derived neurotrophic factor val66met polymorphism affects human memory-related hippocampal activity and predicts memory performance. J. Neurosci. 23, 6690–6694. 10.1523/JNEUROSCI.23-17-06690.2003
    1. Heinisch S., Palma J., Kirby L. G. (2011). Interactions between chemokine and mu-opioid receptors: anatomical findings and electrophysiological studies in the rat periaqueductal grey. Brain. Behav. Immun. 25, 360–372. 10.1016/j.bbi.2010.10.020
    1. Heinze K., Ruh N., Nitschke K., Reis J., Fritsch B., Unterrainer J. M., et al. . (2014). Transcranial direct current stimulation over left and right DLPFC: lateralized effects on planning performance and related eye movements. Biol. Psychol. 102, 130–140. 10.1016/j.biopsycho.2014.07.019
    1. Heinzerling K. G., McCracken J. T., Swanson A. N., Ray L. A., Shoptaw S. J. (2012). COMT Val158Met, BDNF Val66Met, and OPRM1 Asn40Asp and methamphetamine dependence treatment response: preliminary investigation. J. Clin. Psychopharmacol. 32, 135–137. 10.1097/JCP.0b013e318240a48e
    1. HHS and Office of the Surgeon General (2016). Facing Addiction in America: The Surgeon General's Report on Alcohol, Drugs, and Health. Washington, DC: HHS.
    1. Higgins J., Altman D., Gøtzsche P., Jüni P., Moher D., Oxman A., et al. . (2011). The Cochrane Collaboration's tool for assessing risk of bias in randomised trials. BMJ 343:d5928. 10.1136/bmj.d5928
    1. Hone-Blanchet A., Edden R. A., Fecteau S. (2016). Online effects of transcranial direct current stimulation in real time on human prefrontal and striatal metabolites. Biol. Psychiatry 80, 432–438. 10.1016/j.biopsych.2015.11.008
    1. Huang Y., Liu A. A., Lafon B., Friedman D., Dayan M., Wang X., et al. . (2017). Measurements and models of electric fields in the in vivo human brain during transcranial electric stimulation. e-life 6:e18834. 10.1016/j.brs.2017.04.022
    1. Hutchinson M. R., Shavit Y., Grace P. M., Rice K. C., Maier S. F., Watkins L. R. (2011). Exploring the neuroimmunopharmacology of opioids : an integrative review of mechanisms of central immune signaling and their implications for opioid analgesia. Pharmacol. Rev. 63, 772–810. 10.1124/pr.110.004135
    1. Huxtable R. J., Schwarz S. K. (2001) The isolation of morphine–first principles in science ethics. Mol. Interv. 1, 189–191
    1. Ibrahim N. M., Abdelhameed K. M., Kamal S. M. M., Khedr E. M. H., Kotb H. I. M. (2018). Effect of transcranial direct current stimulation of the motor cortex on visceral pain in patients with hepatocellular carcinoma. Pain Med. 19, 550–560. 10.1093/pm/pnx087
    1. Jales Junior L. H., Costa M. D. L., Jales Neto L. H., Ribeiro J. P. M, Freitas W. J. S. N., Teixeira M. J. (2015). Estimulação elétrica transcraniana por corrente contínua em fibromialgia: efeitos sobre a dor e a qualidade de vida, avaliados clinicamente e por cintilografia de perfusão cerebral. Revista Dor. 16, 37–42. 10.5935/1806-0013.20150008
    1. Jamil A., Batsikadze G., Kuo H. I., Labruna L., Hasan A., Paulus W., et al. . (2017). Systematic evaluation of the impact of stimulation intensity on neuroplastic after-effects induced by transcranial direct current stimulation. J. Physiol. 595, 1273–1288. 10.1113/JP272738
    1. Janssen P. A. J. (1982). Potent, new analgesics, tailor-made for different purposes. Acta Anaesthesiol. Scand. 26, 262–268. 10.1111/j.1399-6576.1982.tb01765.x
    1. Jones A. K. P., Brown C. A. (2018). Predictive mechanisms linking brain opioids to chronic pain vulnerability and resilience. Br. J. Pharmacol. 175, 2778–2790. 10.1111/bph.13840
    1. Kest B., Palmese C. A., Hopkins E., Adler M., Juni A., Mogil J. S. (2002). Naloxone-precipitated withdrawal jumping in 11 inbred mouse strains: evidence for common genetic mechanisms in acute and chronic morphine physical dependence. Neuroscience 115, 463–469. 10.1016/S0306-4522(02)00458-X
    1. Khedr E. M., Omran E. A. H., Ismail N. M., El-hammady D. H., Goma S. H., Kotb H., et al. (2017). Brain Stimulation Effects of transcranial direct current stimulation on pain, mood and serum endorphin level in the treatment of fibromyalgia: a double blinded, randomized clinical trial. Brain Stimul. 10, 893–901. 10.1016/j.brs.2017.06.006
    1. Kim J., Ph D., Hampson J., Sundgren P. C., Foerster B., Petrou M., et al. . (2013). Pregabalin rectifies aberrant brain chemistry, connectivity, and functional response in chronic pain patients. Anesthesiology 119, 1453–1464. 10.1097/ALN.0000000000000017
    1. Kim S., Stephenson M. C., Morris P. G., Jackson S. R. (2014). tDCS-induced alterations in GABA concentration within primary motor cortex predict motor learning and motor memory: a 7 T magnetic resonance spectroscopy study. Neuroimage 99, 237–243. 10.1016/j.neuroimage.2014.05.070
    1. Kim Y. J., Ku J., Kim H. J., Im D. J., Lee H. S., Han K. A., et al. . (2013). Randomized, sham controlled trial of transcranial direct current stimulation for painful diabetic polyneuropathy. Science 37, 766–776. 10.5535/arm.2013.37.6.766
    1. Kronberg G., Rahman A., Sharma M., Bikson M., Parra L. C. (2019). Direct current stimulation boosts Hebbian plasticity in vitro. Brain Stimul. 10.1016/j.brs.2019.10.014. [Epub ahead of print].
    1. Kuchinad A., Schweinhardt P., Seminowicz D. A., Wood P. B., Chizh B. A., Bushnell M. C. (2007). Accelerated brain gray matter loss in fibromyalgia patients : premature aging of the brain? J. Neurosci. 27, 4004–4007. 10.1523/JNEUROSCI.0098-07.2007
    1. Lachman (1996). Human COMT pharmacogenetics - a description of a functional polymorphism and its potential application to neuropsychiatric disorders. Pharmacogenetics 6, 243–250. 10.1097/00008571-199606000-00007
    1. Lagueux E., Bernier M., Bourgault P., Whittingstall K., Mercier C., Léonard G., et al. . (2018). The effectiveness of transcranial direct current stimulation as an add-on modality to graded motor imagery for treatment of complex regional pain syndrome a randomized proof of concept study. Clin. J. Pain 34, 145–154. 10.1097/AJP.0000000000000522
    1. Lang N., Nitsche M. A., Paulus W., Rothwell J. C., Lemon R. N. (2004). Effects of transcranial direct current stimulation over the human motor cortex on corticospinal and transcallosal excitability. Exp. Brain Res. 156, 439–443. 10.1007/s00221-003-1800-2
    1. Lang N., Siebner H. R., Ward N. S., Lee L., Nitsche M. A., Paulus W., et al. . (2005). How does transcranial DC stimulation of the primary motor cortex alter regional neuronal activity in the human brain? Eur. J. Neurosci. 22, 495–504. 10.1111/j.1460-9568.2005.04233.x
    1. Langenecker S. A., Zubieta J. K., Young E. A., Akil H., Nielson K. A. (2007). A task to manipulate attentional load, set-shifting, and inhibitory control: convergent validity and test-retest reliability of the Parametric Go/No-Go Test. J. Clin. Exp. Neuropsychol. 29, 842–853. 10.1080/13803390601147611
    1. Lanz S., Seifert F., Maiho C. (2011). Brain activity associated with pain, hyperalgesia and allodynia : an ALE meta-analysis. J. Neural Transm. 118, 1139–1154. 10.1007/s00702-011-0606-9
    1. Lee M., Silverman S., Hansen H., Patel V., Manchikanti L. (2011). A comprehensive review of opioid-induced hyperalgesia. Pain Phys. 14, 145–61.
    1. Lefaucheur J.-P., Ménard-Lefaucheur I., Goujon C., Keravel Y., Nguyen J.-P. (2011). Predictive value of rTMS in the identification of responders to epidural motor cortex stimulation therapy for pain. J. Pain 12, 1102–1111. 10.1016/j.jpain.2011.05.004
    1. Lefaucheur J. P., Drouot X., Ménard-Lefaucheur I., Keravel Y., Nguyen J. P. (2006). Motor cortex rTMS restores defective intracortical inhibition in chronic neuropathic pain. Neurology 67, 1568–1574. 10.1212/01.wnl.0000242731.10074.3c
    1. Lewis G. N., Rice D. A., Kluger M, McNair P. J. (2018). Transcranial direct current stimulation for upper limb neuropathic pain: a double-blind randomized controlled trial. Eur. J. Pain 22, 1312–1320. 10.1002/ejp.1220
    1. Leyman L., De Raedt R., Vanderhasselt M. A., Baeken C. (2009). Influence of high-frequency repetitive transcranial magnetic stimulation over the dorsolateral prefrontal cortex on the inhibition of emotional information in healthy volunteers. Psychol. Med. 39, 1019–1028. 10.1017/S0033291708004431
    1. Liang D. Y., Guo T. Z., Liao G., Kingery W. S., Peltz G., Clark J. D. (2006a). Chronic pain and genetic background interact and influence opioid analgesia, tolerance, and physical dependence. Pain 121, 232–240. 10.1016/j.pain.2005.12.026
    1. Liang D. Y., Liao G., Lighthall G. K., Peltz G., Clark D. J. (2006b). Genetic variants of the P-glycoprotein gene Abcb1b modulate opioid-induced hyperalgesia, tolerance and dependence. Pharmacogenet. Genomics 16, 825–835. 10.1097/01.fpc.0000236321.94271.f8
    1. Liebetanz D., Nitsche M. A., Tergau F., Paulus W. (2002). Pharmacological approach to the mechanisms of transcranial DC-stimulation-induced after-effects of human motor cortex excitability. Brain 125, 2238–2247. 10.1093/brain/awf238
    1. Loggia M. L., Kim J., Gollub R. L., Vangel M. G., Kirsch I., Kong J., et al. . (2013). Default mode network connectivity encodes clinical pain: an arterial spin labeling study. Pain 154, 24–33. 10.1016/j.pain.2012.07.029
    1. Lotta T., Vidgren J., Tilgmann C., Ulmanen I., Melen K., Julkunen I., et al. . (1995). Kinetics of human soluble and membrane-bound catechol O-methyltransferase: a revised mechanism and description of the thermolabile variant of the enzyme. Biochemistry 34, 4202–4210. 10.1021/bi00013a008
    1. Luedtke K., Rushton A., Wright C., Jurgens T., Polzer A., Mueller G., et al. . (2015). Effectiveness of transcranial direct current stimulation preceding cognitive behavioural management for chronic low back pain: sham controlled double blinded randomised controlled trial. BMJ 350:h1640. 10.1136/bmj.h1640
    1. Maarrawi J., Peyron R., Mertens P., Costes N., Magnin M., Sindou M., et al. . (2013). Brain opioid receptor density predicts motor cortex stimulation efficacy for chronic pain. Pain 154, 2563–2568. 10.1016/j.pain.2013.07.042
    1. Maeoka H., Matsuo A., Hiyamizu M., Morioka S., Ando H. (2012). Influence of transcranial direct current stimulation of the dorsolateral prefrontal cortex on pain related emotions: a study using electroencephalographic power spectrum analysis. Neurosci Lett. 512, 12–16. 10.1016/j.neulet.2012.01.037
    1. Malaguti A., Rossini D., Lucca A., Magri L., Lorenzi C., Pirovano A., et al. . (2011). Role of COMT, 5-HT 1A, and SERT genetic polymorphisms on antidepressant response to transcranial magnetic stimulation. Depress. Anxiety 28, 568–573. 10.1002/da.20815
    1. Malcangio M. (2018) GABA(B) receptors and pain. Neuropharmacology 136(Pt A), 102–105. 10.1016/j.neuropharm.2017.05.012.
    1. Matsushita S., Kimura M., Miyakawa T., Yoshino A., Murayama M., Masaki T., et al. . (2004). Association study of brain-derived neurotrophic factor gene polymorphism and alcoholism. Alcohol. Clin. Exp. Res. 28, 1609–1612. 10.1097/01.ALC.0000145697.81741.D2
    1. May A. (2008). Chronic pain may change the structure of the brain. Pain 137, 7–15. 10.1016/j.pain.2008.02.034
    1. McCaig C. D., Rajnicek A. M., Song B., Zhao M. (2005). Controlling cell behavior electrically: current views and future potential. Physiol. Rev. 85:943–978. 10.1152/physrev.00020.2004
    1. Medeiros L. F., de Souza I. C., Vidor L. P., de Souza A., Deitos A., Volzs M. S., et al. . (2012). Neurobiological effects of transcranial direct current stimulation: a review. Front. Psychiatry 3:110. 10.3389/fpsyt.2012.00110
    1. Mendonca M. E., Simis M., Grecco L. C., Battistella L. R., Baptista A. F., Fregni F. (2016). Transcranial direct current stimulation combined with aerobic exercise to optimize analgesic responses in fibromyalgia: a randomized placebo-controlled clinical trial. Front. Hum. Neurosci. 10:68. 10.3389/fnhum.2016.00068
    1. Meng Z., Liu C., Yu C., Ma Y. (2014). Transcranial direct current stimulation of the frontal-parietal-temporal area attenuates smoking behavior. J. Psychiatr. Res. 54, 19–25. 10.1016/j.jpsychires.2014.03.007
    1. Merighi S., Gessi S., Varani K., Fazzi D., Stefanelli A., Borea P. A. (2013). Morphine mediates a proinflammatory phenotype via μ-opioid receptor-PKCε-Akt-ERK1/2 signaling pathway in activated microglial cells. Biochem. Pharmacol. 86, 487–496. 10.1016/j.bcp.2013.05.027
    1. Mhalla A., de Andrade D. C., Baudic S., Perrot S., Bouhassira D. (2010). Alteration of cortical excitability in patients with fibromyalgia. Pain 149, 495–500. 10.1016/j.pain.2010.03.009
    1. Moreno-duarte I., Morse L. R., Alam M., Bikson M., Zafonte R., Fregni F. (2014). NeuroImage Targeted therapies using electrical and magnetic neural stimulation for the treatment of chronic pain in spinal cord injury. Neuroimage 85, 1003–1013. 10.1016/j.neuroimage.2013.05.097
    1. Morin A., Léonard G., Gougeon V., Cyr M. P., Waddell G., Bureau Y. A., et al. . (2017). Efficacy of transcranial direct-current stimulation in women with provoked vestibulodynia. Am. J. Obstet. Gynecol. 216, 584.e1–584.e11. 10.1016/j.ajog.2017.02.049
    1. Mowla S. J., Farhadi H. F., Pareek S., Atwal J. K., Morris S. J., Seidah N. G., et al. . (2001). Biosynthesis and post-translational processing of the precursor to brain-derived neurotrophic factor. J. Biol. Chem. 276, 12660–12666. 10.1074/jbc.M008104200
    1. Mycielska M., Djamgoz M. (2004). Cellular mechanisms of direct-current electric field effects: galvanotaxis and metastatic disease. J. Cell. Sci. 117, 1631–1639. 10.1242/jcs.01125
    1. Napadow V., Kim J., Clauw D. J., Harris R. E. (2012). Decreased intrinsic brain connectivity is associated with reduced clinical pain in fibromyalgia. Arthritis Rheum. 64, 2398–2403. 10.1002/art.34412
    1. Napadow V., LaCount L., Park K., As-Sanie S., Clauw D. J., Harris R. E. (2010). Intrinsic brain connectivity in fibromyalgia is associated with chronic pain intensity. Arthritis Rheum. 62, 2545–2555. 10.1002/art.27497
    1. Navratilova E., Atcherley C. W., Porreca F. (2015). Brain circuits encoding reward from pain relief. Trends Neurosci. 38, 741–750. 10.1016/j.tins.2015.09.003
    1. Nemeroff C. B. (2007). Prevalence and management of treatment-resistant depression. J. Clin. Psychiatry 68, 17–25.
    1. Nicol A. L., Hurley R. W., Benzon H. T. (2017). Alternatives to opioids in the pharmacologic management of chronic pain syndromes. Anesth. Analg. 125, 1682–1703. 10.1213/ANE.0000000000002426
    1. Niddam D. M., Hsieh J. C. (2009). Neuroimaging of muscle pain in humans. J. Chin. Med. Assoc. 72, 285–293. 10.1016/S1726-4901(09)70374-0
    1. Nieratschker V., Kiefer C., Giel K., Krüger R., Plewnia C. (2015). The COMT Val/Met polymorphism modulates effects of tDCS on response inhibition. Brain Stimul. 8, 283–288. 10.1016/j.brs.2014.11.009
    1. Nitsche M. A., Cohen L. G., Wassermann E. M., Priori A., Lang N., Antal A., et al. . (2008). Transcranial direct current stimulation: state of the art 2008. Brain Stimul. 1, 206–223. 10.1016/j.brs.2008.06.004
    1. Nitsche M. A., Fricke K., Henschke U., Schlitterlau A., Liebetanz D., Lang N., et al. . (2003). Pharmacological modulation of cortical excitability shifts induced by transcranial direct current stimulation in humans. J. Physiol. 553, 293–301. 10.1113/jphysiol.2003.049916
    1. Nitsche M. A., Koschack J., Pohlers H., Hullemann S., Paulus W., Happe S. (2012a). Effects of frontal transcranial direct current stimulation on emotional state and processing in healthy humans. Front. Psychiatry 3:58. 10.3389/fpsyt.2012.00058
    1. Nitsche M. A., Müller-Dahlhaus F., Paulus W., Ziemann U. (2012b) The pharmacology of neuroplasticity induced by non-invasive brain stimulation: building models for the clinical use of CNS active drugs. J. Physiol. 590, 4641–4662. 10.1113/jphysiol.2012.232975
    1. Nitsche M. A., Paulus W. (2000). Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. J. Physiol. 527(Pt 3), 633–639. 10.1111/j.1469-7793.2000.t01-1-00633.x
    1. Nitsche M. A., Paulus W. (2001). Sustained excitability elevations induced by transcranial DC motor cortex stimulation in humans. Neurology 57, 1899–1901. 10.1212/WNL.57.10.1899
    1. Oliveira L. B., Lopes T. S., Soares C., Maluf R., Goes B. T., Sá K. N., et al. . (2015). Transcranial direct current stimulation and exercises for treatment of chronic temporomandibular disorders: a blind randomised-controlled trial. J. Oral Rehabil. 42, 723–732. 10.1111/joor.12300
    1. O'Neill F., Sacco P., Bowden E., Asher R., Burnside G., Cox T., et al. . (2018). Patient-delivered tDCS on chronic neuropathic pain in prior responders to TMS (a randomized controlled pilot study). J. Pain Res. 11, 3117–3128. 10.2147/JPR.S186079
    1. Ong W. Y., Stohler C. S., Herr D. R. (2019). Role of the prefrontal cortex in pain processing. Mol. Neurobiol. 56, 1137–1166. 10.1007/s12035-018-1130-9
    1. Ouellet M.-C., Beaulieu-Bonneau S., Morin C. M. (2015). Sleep-wake disturbances after traumatic brain injury. Lancet. Neurol. 14, 746–757. 10.1016/S1474-4422(15)00068-X
    1. Palmer A. M., Messerli M. A., Robinson K. R. (2000). Neuronal galvanotropism is independent of external Ca(2+) entry or internal Ca(2+) gradients. J. Neurobiol. 45, 30–38. 10.1002/1097-4695(200010)45:1<30::AID-NEU3>;2-3
    1. Parsadaniantz S. M., Rivat C., Rostène W., Réaux-Le Goazigo A. (2015). Opioid and chemokine receptor crosstalk: a promising target for pain therapy? Nat. Rev. Neurosci. 16, 69–78. 10.1038/nrn3858
    1. Pascoli V., Terrier J., Espallergues J., Valjent E., O'Connor E. C., Lüscher C. (2014). Contrasting forms of cocaine-evoked plasticity control components of relapse. Nature 509, 459–464. 10.1038/nature13257
    1. Pelletier S. J., Cicchetti F. (2014). Cellular and molecular mechanisms of action of transcranial direct current stimulation: evidence from in vitro and in vivo models. Int. J. Neuropsychopharmacol. 18:pyu047. 10.1093/ijnp/pyu047
    1. Peña-Gómez C., Vidal-Piñeiro D., Clemente I. C., Pascual-Leone Á., Bartrés-Faz D. (2011). Down-regulation of negative emotional processing by transcranial direct current stimulation: effects of personality characteristics. PLoS ONE 6:22812. 10.1371/journal.pone.0022812
    1. Pertovaara A., Almeida A. (2006). Descending inhibitory systems, in Handbook of Clinical Neurology, Chap. 13, Vol. 81, eds Cervero F., Jensen T. S. (Amsterdam: Elsevier; ), 179–192. 10.1016/S0072-9752(06)80017-5
    1. Petrovic P., Kalso E., Petersson K. M, Ingvar M. (2002). Placebo and opioid analgesia– imaging a shared neuronal network. Science 295, 1737–1740. 10.1126/science.1067176
    1. Pezawas L., Verchinski B. A., Mattay V. S., Callicott J. H., Kolachana B. S., Straub R. E., et al. . (2004). The brain-derived neurotrophic factor val66met polymorphism and variation in human cortical morphology. J. Neurosci. 24, 10099–10102. 10.1523/JNEUROSCI.2680-04.2004
    1. Plewnia C., Zwissler B., Längst I., Maurer B., Giel K., Krüger R. (2013). Effects of transcranial direct current stimulation (tDCS) on executive functions: influence of COMT Val/Met polymorphism. Cortex 49, 1801–1807. 10.1016/j.cortex.2012.11.002
    1. Pogarell O., Koch W., Pöpperl G., Tatsch K., Jakob F., Zwanzger P., et al. (2006). Striatal dopamine release after prefrontal repetitive transcranial magnetic stimulation in major depression: preliminary results of a dynamic [123I] IBZM SPECT study. J. Psychiatr. Res. 40, 307–314. 10.1016/j.jpsychires.2005.09.001
    1. Potter J., Marino E., Hillhouse M., Nielsen S., Wiest K., Canamar C., et al. . (2013). Buprenorphine/naloxone and methadone maintenance treatment outcomes for opioid analgesic, heroin, and combined users: findings from starting treatment with agonist replacement therapies (START). J. Stud. Alcohol Drugs 74, 605–613. 10.15288/jsad.2013.74.605
    1. Price D. D., Staud R., Robinson M. E., Mauderli A. P., Cannon R., Vierck C. J. (2002). Enhanced temporal summation of second pain and its central modulation in fibromyalgia patients. Pain 99, 49–59. 10.1016/S0304-3959(02)00053-2
    1. Priori A. (2003). Brain polarization in humans: a reappraisal of an old tool for prolonged non-invasive modulation of brain excitability. Clin. Neurophysiol. 114, 589–595. 10.1016/S1388-2457(02)00437-6
    1. Ramirez E., Loprinzi C., Anthony Windebank T., Lauren E. (2013). Neuropathic pain: from mechanism to clinical application, in Peripheral Neuropathy: A New Insight into the Mechanism, Evaluation and Management of a Complex Disorder, ed Souayah N. (IntechOpen: ). 10.5772/55277
    1. Reiser M., Möller H.-J., Baghai T., Schmitt G., Born C., Rupprecht R., et al. . (2007). Association of the brain-derived neurotrophic factor Val66Met polymorphism with reduced hippocampal volumes in major depression. Arch. Gen. Psychiatry 64:410. 10.1001/archpsyc.64.4.410
    1. Ribeiro H., Sesterhenn R. B., De Souza A., De Souza A. C., Alves M., Machado J. C., et al. . (2017). Preoperative transcranial direct current stimulation: exploration of a novel strategy to enhance neuroplasticity before surgery to control postoperative pain. A randomized sham-controlled study. PLoS ONE 12:187013. 10.1371/journal.pone.0187013
    1. Richards G. C., Lluka L. J., Smith M. T., Haslam C., Moore B., O'Callaghan J., et al. . (2018). Effects of long-term opioid analgesics on cognitive performance and plasma cytokine concentrations in patients with chronic low back pain: a cross-sectional pilot study. Pain Rep. 3, 1–10. 10.1097/PR9.0000000000000669
    1. Rieb L. M., Norman W. V., Martin R. E., Berkowitz J., Wood E., McNeil R., et al. . (2016). Withdrawal-associated injury site pain (WISP). Pain 157, 2865–2874. 10.1097/j.pain.0000000000000710
    1. Rivat C., Sebaihi S., Steenwinckel J., Van Fouquet S., Kitabgi P., Pohl M., et al. (2014). Brain, Behavior, and Immunity Src family kinases involved in CXCL12-induced loss of acute morphine analgesia q. Brain Behav. Immun. 38, 38–52. 10.1016/j.bbi.2013.11.010
    1. Roeckel L.-A., Le Coz G.-M., Gavériaux-Ruff C., Simonin F. (2016). Opioid-induced hyperalgesia: cellular and molecular mechanisms. Neuroscience 338, 160–182. 10.1016/j.neuroscience.2016.06.029
    1. Rohan J. G., Carhuatanta K. A., McInturf S. M., Miklasevich M. K., Jankord R. (2015). Modulating hippocampal plasticity with in vivo brain stimulation. J. Neurosci. 35, 12824–12832. 10.1523/JNEUROSCI.2376-15.2015
    1. Roviš D., Cernelič Bizjak M., Vasiljev Marchesi V., Petelin A., Jenuš T., Vidic S., et al. . (2018). Increased risk-taking behaviour and brain-derived neurotrophic factor Val66Met polymorphism correlates to decreased serum brain-derived neurotrophic factor level in heroin users. Eur. Addict. Res. 24, 189–200. 10.1159/000492582
    1. Rush S., Driscoll D. A. (1967). Current distribution in the brain from surface electrodes. Anesth. Analg. 47, 717–723. 10.1213/00000539-196811000-00016
    1. Sakrajai P., Janyacharoen T., Jensen M. P., Sawanyawisuth K., Auvichayapat N., Tunkamnerdthai O., et al. . (2014). Pain reduction in myofascial pain syndrome by anodal transcranial direct current stimulation combined with standard treatment: a randomized controlled study. Clin. J. Pain 30, 1076–1083. 10.1097/AJP.0000000000000069
    1. Salling M. C., Martinez D. (2016). Brain stimulation in addiction. Neuropsychopharmacology 41, 2798–2809. 10.1038/npp.2016.80
    1. Sauvaget A., Trojak B., Bulteau S., Jiménez-Murcia S., Fernández-Aranda F., Wolz I., et al. . (2015). Transcranial direct current stimulation (tDCS) in behavioral and food addiction: a systematic review of efficacy, technical, and methodological issues. Front. Neurosci. 9:349. 10.3389/fnins.2015.00349
    1. Shivakumar V., Chhabra H., Subbanna M., Agarwal S. M., Bose A., Kalmady S. V., et al. . (2015). Effect of tDCS on auditory hallucinations in schizophrenia: influence of catechol-O-methyltransferase (COMT) Val158Met polymorphism. Asian J. Psychiatr. 16, 75–77. 10.1016/j.ajp.2015.05.038
    1. Silva-Filho E., Okano A. H., Morya E., Albuquerque J., Cacho E., Unal G., et al. . (2018). Neuromodulation treats Chikungunya arthralgia: a randomized controlled trial. Sci. Rep. 8, 1–10. 10.1038/s41598-018-34514-4
    1. Soler M. D., Kumru H., Pelayo R., Vidal J., Tormos J. M., Fregni F., et al. . (2010). stimulation and visual illusion on neuropathic pain in spinal cord injury. Brain 133, 2565–2577. 10.1093/brain/awq184
    1. Souza V., Zortea M., Alves R. L., Cilene C., Naziazeno S., Saldanha J. S., et al. . (2018). Cognitive effects of transcranial direct current stimulation combined with working memory training in fibromyalgia : a randomized clinical trial. Sci. Rep. 8:12477. 10.1038/s41598-018-30127-z
    1. Stagg C. J., Best J., Stephenson M., O'Shea J., Wylezinska M., Kincses Z., et al. . (2009). Polarity-sensitive modulation of cortical neurotransmitters by transcranial stimulation. J. Neurosci. 29, 5202–5206. 10.1523/JNEUROSCI.4432-08.2009
    1. Staud R., Vierck C. J., Cannon R. L., Mauderli A. P., Price D. D. (2001). Abnormal sensitization and temporal summation of second pain (wind-up) in patients with fibromyalgia syndrome. Pain. 91, 165–175. 10.1016/S0304-3959(00)00432-2
    1. Strafella A. P., Paus T., Barrett J., Dagher A. (2001). Repetitive transcranial magnetic stimulation of the human prefrontal cortex induces dopamine release in the caudate nucleus. J. Neurosci. 21:RC157. 10.1523/JNEUROSCI.21-15-j0003.2001
    1. Strafella A. P., Vanderwerf Y., Sadikot A. F. (2004). Transcranial magnetic stimulation of the human motor cortex influences the neuronal activity of subthalamic nucleus. Eur. J. Neurosci. 20, 2245–2249. 10.1111/j.1460-9568.2004.03669.x
    1. Szabo I., Chen X.-H., Xin L., Adler M. W., Howard O. M. Z., Oppenheim J. J. (2002). Heterologous desensitization of opioid receptors by chemokines inhibits chemotaxis and enhances the perception of pain. Proc. Natl. Acad. Sci. U.S.A. 99, 10276–10281. 10.1073/pnas.102327699
    1. To W. T., James E., Ost J., Hart J., Jr., De Ridder D., Vanneste S. (2017). Differential effects of bifrontal and occipital nerve stimulation on pain and fatigue using transcranial direct current stimulation in fibromyalgia patients. J. Neural Transm. 124, 799–808. 10.1007/s00702-017-1714-y
    1. Uhl G. R., Koob G. F., Cable J. (2019). The neurobiology of addiction. Ann. N.Y. Acad. Sci. 1451, 528. 10.1111/nyas.13989
    1. Upadhyay J., Maleki N., Potter J., Elman I., Rudrauf D., Knudsen J., et al. . (2010). Alterations in brain structure and functional connectivity in prescription opioid-dependent patients. Brain 133, 2098–2114. 10.1093/brain/awq138
    1. Valle A., Roizenblatt S., Botte S., Zaghi S., Riberto M., Tufik S., et al. . (2010). Efficacy of anodal transcranial direct current stimulation (tDCS) for the treatment of fibromyalgia: results of a randomized, sham controlled longitudinal clinical trial. J. Pain Manag. 2, 353–361.
    1. Volkow N. D., McLellan A. T. (2016). Opioid abuse in chronic pain — misconceptions and mitigation strategies. N. Engl. J. Med. 374, 1253–1263. 10.1056/NEJMra1507771
    1. Vowles K. E., McEntee M. L., Julnes P. S., Frohe T., Ney J. P., van der Goes D. N. (2015). Rates of opioid misuse, abuse, and addiction in chronic pain. Pain 156, 569–576. 10.1097/01.j.pain.0000460357.01998.f1
    1. Waldhoer M., Bartlett S., Whistler J. (2004). Opioid receptors. Annu. Rev. Biochem. 73, 953–90. 10.1146/annurev.biochem.73.011303.073940
    1. Wang Y., Shen Y., Cao X., Shan C., Pan J., He H., et al. . (2016). Transcranial direct current stimulation of the frontal-parietal-temporal area attenuates cue-induced craving for heroin. J. Psychiatr. Res. 79, 1–3. 10.1016/j.jpsychires.2016.04.001
    1. Williams J. T., Ingram S. L., Henderson G., Chavkin C., von Zastrow M., Schulz S., et al. . (2013). Regulation of -opioid receptors: desensitization, phosphorylation, internalization, and tolerance. Pharmacol. Rev. 65, 223–254. 10.1124/pr.112.005942
    1. Wilson S. G. (2003). The heritability of antinociception: common pharmacogenetic mediation of five neurochemically distinct analgesics. J. Pharmacol. Exp. Ther. 304, 547–559. 10.1124/jpet.102.041889
    1. Wing V. C., Barr M. S., Wass C. E., Lipsman N., Lozano A. M., Daskalakis Z. J., et al. . (2013). Brain stimulation methods to treat tobacco addiction. Brain Stimul. 6, 221–230. 10.1016/j.brs.2012.06.008
    1. Witney A. G. (2018). Neurostimulation techniques for the modulation of pain, in Transcranial Magnetic Stimulation in Neuropsychiatry, ed Ustohal L. (IntechOpen: ). 10.5772/intechopen.7940
    1. Wrigley P. J., Gustin S. M., Mcindoe L. N., Chakiath R. J., Henderson L. A., Siddall P. J. (2013). Longstanding neuropathic pain after spinal cord injury is refractory to transcranial direct current stimulation : a randomized controlled trial. Pain 154, 2178–2184. 10.1016/j.pain.2013.06.045
    1. Yavari F., Nitsche M. A., Ekhtiari H. (2017). Transcranial electric stimulation for precision medicine: a spatiomechanistic framework. Front. Hum. Neurosci. 11:159. 10.3389/fnhum.2017.00159
    1. Yuferov V., Levran O., Proudnikov D., Nielsen D. A., Kreek M. J. (2010). Search for genetic markers and functional variants involved in the development of opiate and cocaine addiction and treatment. Ann. N.Y. Acad. Sci. 1187, 184–207. 10.1111/j.1749-6632.2009.05275.x
    1. Yunus M. B. (2015). Editorial review: an update on central sensitivity syndromes and the issues of nosology and psychobiology. Curr. Rheumatol. Rev. 11, 70–85. 10.2174/157339711102150702112236
    1. Zhao M. (2009). Electrical fields in wound healing: an overriding signal that directs cell migration. Semin. Cell. Dev. Biol. 20, 674–682. 10.1016/j.semcdb.2008.12.009
    1. Zhou D., Chen M., Zhang Y., Zhao Z. (2010). Involvement of spinal microglial P2X7 receptor in generation of tolerance to morphine analgesia in rats. J. Neurosci. 30, 8042–8047. 10.1523/JNEUROSCI.5377-09.2010

Source: PubMed

3
Prenumerera