Translation and validation of a Hebrew version of the Western Ontario Shoulder Instability index

Uri Gottlieb, Shmuel Springer, Uri Gottlieb, Shmuel Springer

Abstract

Background: The Western Ontario Shoulder Instability index (WOSI) is a questionnaire designed to measure health-related quality of life in patients with shoulder instability. The aim of the current study was to translate the WOSI into Hebrew and assess its psychometric properties.

Methods: The WOSI was translated into Hebrew according to World Health Organization guidelines. Twenty-five patients completed the WOSI and the Disabilities of Arm, Shoulder, and Hand (DASH) questionnaire 2 weeks and 2 months after surgical shoulder stabilization. Internal consistency (Cronbach's α), criterion validity (Pearson's correlation coefficient with DASH), responsiveness, and floor and ceiling effects were assessed.

Results: Cronbach's α was 0.88-0.95 for total WOSI (range 0.68-0.95 for different sections). Strong correlation with DASH score (r = 0.76-0.84) indicated good criterion validity. Changes between baseline and follow-up for WOSI and DASH scores were moderately correlated (r = 0.68), suggesting moderate responsiveness. Some items demonstrated floor and ceiling effects, especially at baseline, but no floor or ceiling effects were observed for total WOSI or for the WOSI sections.

Conclusions: The results of the current study demonstrate that the Hebrew version of the WOSI is a valid instrument that can be used to assess disability in patients with shoulder instability. Additional studies are warranted to assess its psychometric properties among various subpopulations.

Trial registration: The study was pre-registered at the ClinicalTrials.gov website, registration number NCT02978365 .

Keywords: Evaluation; Patient-reported outcome measures; Quality of life; Self-administered questionnaire; Shoulder instability.

Conflict of interest statement

The authors declare they have no competing interests.

References

    1. Kuhn JE. A new classification system for shoulder instability. Br J Sports Med. 2010;44:341–346. doi: 10.1136/bjsm.2009.071183.
    1. Owens BD, Agel J, Mountcastle SB, Cameron KL, Nelson BJ. Incidence of glenohumeral instability in collegiate athletics. Am J Sports Med. 2009;37:1750–1754. doi: 10.1177/0363546509334591.
    1. Amako M, Sasao H, Matsuhashi Y, Yato Y, Yoshihara Y, Arino H, et al. Incidence and characteristics of traumatic shoulder instability in Japanese military cadets. Mil Med. 2016;181:577–581. doi: 10.7205/MILMED-D-15-00245.
    1. Robinson CM, Howes J, Murdoch H, Will E, Graham C. Functional outcome and risk of recurrent instability after primary traumatic anterior shoulder dislocation in young patients. J Bone Jt Surg. 2006;88:2326–2336. doi: 10.2106/JBJS.E.01327.
    1. Godin J, Sekiya JK. Systematic review of rehabilitation versus operative stabilization for the treatment of first-time anterior shoulder dislocations. Sports Health. 2010;2:156–165. doi: 10.1177/1941738109359507.
    1. Dickens JF, Rue J-P, Cameron KL, Tokish JM, Peck KY, Allred CD, et al. Successful return to sport after arthroscopic shoulder stabilization versus nonoperative management in contact athletes with anterior shoulder instability: a prospective multicenter study. Am J Sports Med. 2017;45:2540–2546. doi: 10.1177/0363546517712505.
    1. Longo UG, van der Linde JA, Loppini M, Coco V, Poolman RW, Denaro V. Surgical versus nonoperative treatment in patients up to 18 years old with traumatic shoulder instability: a systematic review and quantitative synthesis of the literature. Arthroscopy. 2016;32(5):944–952. doi: 10.1016/j.arthro.2015.10.020.
    1. Lebus GF, Raynor MB, Nwosu SK, Wagstrom E, Jani SS, Carey JL, et al. Predictors for surgery in shoulder instability: a retrospective cohort study using the FEDS system. Orthop J Sport Med. 2015;3:1–7. doi: 10.1177/2325967115607434.
    1. Lizzio VA, Meta F, Fidai M, Makhni EC. Clinical evaluation and physical exam findings in patients with anterior shoulder instability. Curr Rev Musculoskelet Med. Springer. 2017;10:434–441. doi: 10.1007/s12178-017-9434-3.
    1. van der Linde JA, Willems WJ, van Kampen DA, van Beers LW, van Deurzen DFP, Terwee CB. Measurement properties of the Western Ontario Shoulder Instability index in the Netherlands patients with shoulder instability. BMC Musculoskelet Disord. 2014;15:211. doi: 10.1186/1471-2474-15-211.
    1. Hudak PL, Amadio PC, Bombardier C. Development of an upper extremity outcome measure: the DASH (disabilities of the arm, shoulder and hand) [corrected]. The Upper Extremity Collaborative Group (UECG) Am J Ind Med. 1996;29:602–608. doi: 10.1002/(SICI)1097-0274(199606)29:6<602::AID-AJIM4>;2-L.
    1. Angst F, Schwyzer H-KK, Aeschlimann A, Simmen BR, Goldhahn J. Measures of adult shoulder function: Disabilities of the Arm, Shoulder, and Hand Questionnaire (DASH) and Its Short Version (QuickDASH), Shoulder Pain and Disability Index (SPADI), American Shoulder and Elbow Surgeons (ASES) Society Standardized Shoulder. Arthritis Care Res. 2011;63:174–188. doi: 10.1002/acr.20630.
    1. Smith MV, Calfee RP, Baumgarten KM, Brophy RH, Wright RW. Upper extremity-specific measures of disability and outcomes in orthopaedic surgery. J Bone Joint Surg Am. 2012;94:277–285. doi: 10.2106/JBJS.J.01744.
    1. Oliva F, Piccirilli E, Bossa M, Via AG, Colombo A, Chillemi C, et al. I.S.Mu.L.T - Rotator cuff tears guidelines. Muscles Ligaments Tendons J. 2015;5:227–263. doi: 10.32098/mltj.04.2015.01.
    1. Kirkley A, Griffin S, McLintock H, Ng L. The development and evaluation of a disease-specific quality of life measurement tool for shoulder instability. The Western Ontario Shoulder Instability Index (WOSI) Am J Sports Med. 1998;26:764–772. doi: 10.1177/03635465980260060501.
    1. Khiami F, Sariali E, Rosenheim M, Hardy P. Anterior shoulder instability arthroscopic treatment outcomes measures: the WOSI correlates with the Walch-Duplay score. Orthop Traumatol Surg Res. 2012;98:48–53. doi: 10.1016/j.otsr.2011.09.013.
    1. Kemp KAR, Sheps DM, Beaupre LA, Styles-Tripp F, Luciak-Corea C, Balyk R. An evaluation of the responsiveness and discriminant validity of shoulder questionnaires among patients receiving surgical correction of shoulder instability. ScientificWorldJournal. 2012;2012:410125. doi: 10.1100/2012/410125.
    1. Rouleau DM, Faber K, MacDermid JC. Systematic review of patient-administered shoulder functional scores on instability. J Shoulder Elb Surg. 2010;19:1121–1128. doi: 10.1016/j.jse.2010.07.003.
    1. Cacchio A, Paoloni M, Griffin SH, Rosa F, Properzi G, Padua L, et al. Cross-cultural adaptation and measurement properties of an Italian version of the Western Ontario Shoulder Instability index (WOSI) J Orthop Sport Phys Ther. 2012;42:559–5B6. doi: 10.2519/jospt.2012.3827.
    1. Yuguero M, Huguet J, Griffin S, Sirvent E, Marcano F, Balaguer M, et al. Transcultural adaptation, validation and assessment of the psychometric properties of the Spanish version of the Western Ontario Shoulder Instability Index questionnaire. Rev Española Cirugía Ortopédica y Traumatol (English Ed.) 2016;60:335–345.
    1. Perrin C, Frederic K, Beguin L, Calmels P, Gresta G, Edouard P. Translation and validation of the shoulder algo-functional score WOSI (Western Ontario Shoulder Instability Index): WOSI-Fr. Ann Phys Rehabil Med. 2016;59:e109–e110. doi: 10.1016/j.rehab.2016.07.244.
    1. Salomonsson B, Ahlström S, Dalén N, Lillkrona U. The Western Ontario Shoulder Instability Index (WOSI): validity, reliability, and responsiveness retested with a Swedish translation. Acta Orthop. 2009;80:233–238. doi: 10.3109/17453670902930057.
    1. Hatta T, Shinozaki N, Omi R, Sano H, Yamamoto N, Ando A, et al. Reliability and validity of the Western Ontario Shoulder Instability Index (WOSI) in the Japanese population. J Orthop Sci. 2011;16:732–736. doi: 10.1007/s00776-011-0141-4.
    1. Wild D, Grove A, Martin M, Eremenco S, McElroy S, Verjee-Lorenz A, et al. Principles of good practice for the translation and cultural adaptation process for patient-reported outcomes (PRO) measures: report of the ISPOR task force for translation and cultural adaptation. Value Heal. 2005;8:94–104. doi: 10.1111/j.1524-4733.2005.04054.x.
    1. Beaton DE, Bombardier C, Guillemin F, Ferraz MB. Guidelines for the process of cross-cultural adaptation of self-report measures. Spine (Phila Pa 1976). 2000;25:3186–3191. doi: 10.1097/00007632-200012150-00014.
    1. Process of translation and adaptation of instruments, World Health Organization. . Accessed 6 June 2019
    1. Tsang S, Royse CF, Terkawi AS. Guidelines for developing, translating, and validating a questionnaire in perioperative and pain medicine. Saudi j anaesth. 2017;11(Suppl 1):S80. doi: 10.4103/sja.SJA_203_17.
    1. Efrat Z, Ety S, Yael K-C, Hagar P. The Disabilities of the Arm, Shoulder and Hand in Hebrew. Barzilai Med. Center, Ashkelon, Isr. (Institute Work Heal). 2006. . Accessed 6 June 2019.
    1. Dor A, Vatine J-J, Kalichman L. Proximal myofascial pain in patients with distal complex regional pain syndrome of the upper limb. J Bodyw Mov Ther. 2019. 10.1016/j.jbmt.2019.02.015.
    1. Terwee CB, Bot SDM, de Boer MR, van der Windt DAWM, Knol DL, Dekker J, et al. Quality criteria were proposed for measurement properties of health status questionnaires. J Clin Epidemiol. 2007;60:34–42. doi: 10.1016/j.jclinepi.2006.03.012.

Source: PubMed

3
Prenumerera