Prevalence of SARS-CoV-2 Infection in Children by Antibody Detection in Saliva: Protocol for a Prospective Longitudinal Study (Coro-Buddy)

Yudi T Pinilla, Evelyn Friessinger, Johanna Marie Griesbaum, Lilith Berner, Constanze Heinzel, Käthe Elsner, Rolf Fendel, Jana Held, Andrea Kreidenweiss, Yudi T Pinilla, Evelyn Friessinger, Johanna Marie Griesbaum, Lilith Berner, Constanze Heinzel, Käthe Elsner, Rolf Fendel, Jana Held, Andrea Kreidenweiss

Abstract

Background: The world has been confronted with the COVID-19 pandemic for more than one year. Severe disease is more often found among elderly people, whereas most young children and adolescents show mild symptoms or even remain asymptomatic, so that infection might be undiagnosed. Therefore, only limited epidemiological data on SARS-CoV-2 infection in children and young adults are available.

Objective: This study aims to determine the prevalence of SARS-CoV-2 antibodies in children from the city of Tübingen, Germany, and to measure the incidence of new cases over 12 months.

Methods: SARS-CoV-2 antibodies will be measured in saliva as a surrogate for a previous SARS-CoV-2 infection. Children will be sampled at their preschools, primary schools, and secondary schools at three time points: July 2020, October to December 2020, and April to July 2021. An adult cohort will be sampled at the same time points (ie, adult comparator group). The saliva-based SARS-CoV-2-antibody enzyme-linked immunosorbent assay will be validated using blood and saliva samples from adults with confirmed previous SARS-CoV-2 infections (ie, adult validation group).

Results: The first study participant was enrolled in July 2020, and recruitment and enrollment continued until July 2021. We have recruited and enrolled 1850 children, 560 adults for the comparator group, and 83 adults for the validation group. We have collected samples from the children and the adults for the comparator group at the three time points. We followed up with participants in the adult validation group every 2 months and, as of the writing of this paper, we were at time point 7. We will conduct data analysis after the data collection period.

Conclusions: Infection rates in children are commonly underreported due to a lack of polymerase chain reaction testing. This study will report on the prevalence of SARS-CoV-2 infections in infants, school children, and adolescents as well as the incidence change over 12 months in the city of Tübingen, Germany. The saliva sampling approach for SARS-CoV-2-antibody measurement allows for a unique, representative, population-based sample collection process.

Trial registration: ClinicalTrials.gov NCT04581889; https://ichgcp.net/clinical-trials-registry/NCT04581889.

International registered report identifier (irrid): DERR1-10.2196/27739.

Keywords: COVID-19; SARS-CoV-2; antibody; children; epidemiology; saliva.

Conflict of interest statement

Conflicts of Interest: None declared.

©Yudi T Pinilla, Evelyn Friessinger, Johanna Marie Griesbaum, Lilith Berner, Constanze Heinzel, Käthe Elsner, Rolf Fendel, Jana Held, Andrea Kreidenweiss. Originally published in JMIR Research Protocols (https://www.researchprotocols.org), 08.10.2021.

Figures

Figure 1
Figure 1
Study flowchart for participant sampling. T: time point.

References

    1. Yang X, Yu Y, Xu J, Shu H, Xia J, Liu H, Wu Y, Zhang L, Yu Z, Fang M, Yu T, Wang Y, Pan S, Zou X, Yuan S, Shang Y. Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: A single-centered, retrospective, observational study. Lancet Respir Med. 2020 May;8(5):475–481. doi: 10.1016/S2213-2600(20)30079-5. S2213-2600(20)30079-5
    1. WHO Director-General's opening remarks at the media briefing on COVID-19. World Health Organization. 2020. Mar 11, [2021-09-22]. .
    1. Amanat F, Stadlbauer D, Strohmeier S, Nguyen T, Chromikova V, McMahon M, Jiang K, Arunkumar GA, Jurczyszak D, Polanco J, Bermudez-Gonzalez M, Kleiner G, Aydillo T, Miorin L, Fierer DS, Lugo LA, Kojic EM, Stoever J, Liu STH, Cunningham-Rundles C, Felgner PL, Moran T, García-Sastre A, Caplivski D, Cheng AC, Kedzierska K, Vapalahti O, Hepojoki JM, Simon V, Krammer F. A serological assay to detect SARS-CoV-2 seroconversion in humans. Nat Med. 2020 Jul;26(7):1033–1036. doi: 10.1038/s41591-020-0913-5. 10.1038/s41591-020-0913-5
    1. Chan JF, Yuan S, Kok K, To KK, Chu H, Yang J, Xing F, Liu J, Yip CC, Poon RW, Tsoi H, Lo SK, Chan K, Poon VK, Chan W, Ip JD, Cai J, Cheng VC, Chen H, Hui CK, Yuen K. A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: A study of a family cluster. Lancet. 2020 Feb 15;395(10223):514–523. doi: 10.1016/S0140-6736(20)30154-9. S0140-6736(20)30154-9
    1. Ciuca IM. COVID-19 in children: An ample review. Risk Manag Healthc Policy. 2020;13:661–669. doi: 10.2147/RMHP.S257180. doi: 10.2147/RMHP.S257180.257180
    1. de Souza TH, Nadal JA, Nogueira RJN, Pereira RM, Brandão MB. Clinical manifestations of children with COVID-19: A systematic review. Pediatr Pulmonol. 2020 Aug;55(8):1892–1899. doi: 10.1002/ppul.24885.
    1. Lai C, Liu YH, Wang C, Wang Y, Hsueh S, Yen M, Ko W, Hsueh P. Asymptomatic carrier state, acute respiratory disease, and pneumonia due to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2): Facts and myths. J Microbiol Immunol Infect. 2020 Jun;53(3):404–412. doi: 10.1016/j.jmii.2020.02.012. S1684-1182(20)30040-2
    1. Hong H, Wang Y, Chung H, Chen C. Clinical characteristics of novel coronavirus disease 2019 (COVID-19) in newborns, infants and children. Pediatr Neonatol. 2020 Apr;61(2):131–132. doi: 10.1016/j.pedneo.2020.03.001. S1875-9572(20)30026-7
    1. COVID-19 (coronavirus SARS-CoV-2) Robert Koch Institute. [2021-09-22]. .
    1. Bailey LC, Razzaghi H, Burrows EK, Bunnell HT, Camacho PEF, Christakis DA, Eckrich D, Kitzmiller M, Lin SM, Magnusen BC, Newland J, Pajor NM, Ranade D, Rao S, Sofela O, Zahner J, Bruno C, Forrest CB. Assessment of 135 794 pediatric patients tested for severe acute respiratory syndrome coronavirus 2 across the United States. JAMA Pediatr. 2021 Feb 01;175(2):176–184. doi: 10.1001/jamapediatrics.2020.5052.2773298
    1. Pollán M, Pérez-Gómez B, Pastor-Barriuso R, Oteo J, Hernán MA, Pérez-Olmeda M, Sanmartín JL, Fernández-García A, Cruz I, Fernández de Larrea N, Molina M, Rodríguez-Cabrera F, Martín M, Merino-Amador P, León Paniagua J, Muñoz-Montalvo JF, Blanco F, Yotti R, ENE-COVID Study Group Prevalence of SARS-CoV-2 in Spain (ENE-COVID): A nationwide, population-based seroepidemiological study. Lancet. 2020 Aug 22;396(10250):535–544. doi: 10.1016/S0140-6736(20)31483-5. S0140-6736(20)31483-5
    1. Perera RA, Mok CK, Tsang OT, Lv H, Ko RL, Wu NC, Yuan M, Leung WS, Chan JM, Chik TS, Choi CY, Leung K, Chan KH, Chan KC, Li K, Wu JT, Wilson IA, Monto AS, Poon LL, Peiris M. Serological assays for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), March 2020. Euro Surveill. 2020 Apr;25(16):1–9. doi: 10.2807/1560-7917.ES.2020.25.16.2000421.
    1. Isho B, Abe KT, Zuo M, Jamal AJ, Rathod B, Wang JH, Li Z, Chao G, Rojas OL, Bang YM, Pu A, Christie-Holmes N, Gervais C, Ceccarelli D, Samavarchi-Tehrani P, Guvenc F, Budylowski P, Li A, Paterson A, Yue FY, Marin LM, Caldwell L, Wrana JL, Colwill K, Sicheri F, Mubareka S, Gray-Owen SD, Drews SJ, Siqueira WL, Barrios-Rodiles M, Ostrowski M, Rini JM, Durocher Y, McGeer AJ, Gommerman JL, Gingras AC. Persistence of serum and saliva antibody responses to SARS-CoV-2 spike antigens in COVID-19 patients. Sci Immunol. 2020 Oct 08;5(52):1–20. doi: 10.1126/sciimmunol.abe5511. 5/52/eabe5511
    1. Pisanic N, Randad PR, Kruczynski K, Manabe YC, Thomas DL, Pekosz A, Klein SL, Betenbaugh MJ, Clarke WA, Laeyendecker O, Caturegli PP, Larman HB, Detrick B, Fairley JK, Sherman AC, Rouphael N, Edupuganti S, Granger DA, Granger SW, Collins MH, Heaney CD. COVID-19 serology at population scale: SARS-CoV-2-specific antibody responses in saliva. J Clin Microbiol. 2020 Dec 17;59(1):1–13. doi: 10.1128/JCM.02204-20. JCM.02204-20
    1. Roque M, Proudfoot K, Mathys V, Yu S, Krieger N, Gernon T, Gokli K, Hamilton S, Cook C, Fong Y. A review of nasopharyngeal swab and saliva tests for SARS-CoV-2 infection: Disease timelines, relative sensitivities, and test optimization. J Surg Oncol. 2021 Sep;124(4):465–475. doi: 10.1002/jso.26561.
    1. Miller CS, Berger JR, Mootoor Y, Avdiushko SA, Zhu H, Kryscio RJ. High prevalence of multiple human herpesviruses in saliva from human immunodeficiency virus-infected persons in the era of highly active antiretroviral therapy. J Clin Microbiol. 2006 Jul;44(7):2409–2415. doi: 10.1128/JCM.00256-06. 44/7/2409
    1. Hettegger P, Huber J, Paßecker K, Soldo R, Kegler U, Nöhammer C, Weinhäusel A. High similarity of IgG antibody profiles in blood and saliva opens opportunities for saliva based serology. PLoS One. 2019;14(6):1–17. doi: 10.1371/journal.pone.0218456. PONE-D-18-37003
    1. Medina Cruz H, Salete de Paula V, Ferreira da Silva E, Rodrigues do Ó KM, Pádua Milagres FA, Santos Cruz M, Bastos FI, Corrêa da Mota J, Pollo-Flores P, Leal E, Coimbra Motta-Castro AR, Lewis-Ximenez LL, Lampe E, Melo Villar L. Utility of oral fluid samples for hepatitis B antibody detection in real life conditions. BMC Infect Dis. 2019 Jul 17;19(1):632. doi: 10.1186/s12879-019-4183-0. 10.1186/s12879-019-4183-0
    1. Sullivan PS, Sailey C, Guest JL, Guarner J, Kelley C, Siegler AJ, Valentine-Graves M, Gravens L, Del Rio C, Sanchez TH. Detection of SARS-CoV-2 RNA and antibodies in diverse samples: Protocol to validate the sufficiency of provider-observed, home-collected blood, saliva, and oropharyngeal samples. JMIR Public Health Surveill. 2020 Apr 24;6(2):e19054. doi: 10.2196/19054. v6i2e19054
    1. Heinzel C, Pinilla YT, Elsner K, Friessinger E, Mordmüller B, Kremsner PG, Held J, Fendel R, Kreidenweiss A. Non-invasive antibody assessment in saliva to determine SARS-CoV-2 exposure in young children. Front Immunol. 2021 doi: 10.3389/fimmu.2021.753435. (forthcoming)
    1. Dong Y, Mo X, Hu Y, Qi X, Jiang F, Jiang Z, Tong S. Epidemiology of COVID-19 among children in China. Pediatrics. 2020 Jun;145(6):1–12. doi: 10.1542/peds.2020-0702. peds.2020-0702
    1. Götzinger F, Santiago-García B, Noguera-Julián A, Lanaspa M, Lancella L, Calò Carducci FI, Gabrovska N, Velizarova S, Prunk P, Osterman V, Krivec U, Lo Vecchio A, Shingadia D, Soriano-Arandes A, Melendo S, Lanari M, Pierantoni L, Wagner N, L'Huillier AG, Heininger U, Ritz N, Bandi S, Krajcar N, Roglić S, Santos M, Christiaens C, Creuven M, Buonsenso D, Welch SB, Bogyi M, Brinkmann F, Tebruegge M, ptbnet COVID-19 Study Group COVID-19 in children and adolescents in Europe: A multinational, multicentre cohort study. Lancet Child Adolesc Health. 2020 Sep;4(9):653–661. doi: 10.1016/S2352-4642(20)30177-2. S2352-4642(20)30177-2
    1. COVID-19 in Children and the Role of School Settings in Transmission - Second Update. Stockholm, Sweden: European Centre for Disease Prevention and Control; 2021. Jul 08, [2021-09-22]. .
    1. Hippich M, Holthaus L, Assfalg R, Zapardiel-Gonzalo J, Kapfelsperger H, Heigermoser M, Haupt F, Ewald DA, Welzhofer TC, Marcus BA, Heck S, Koelln A, Stock J, Voss F, Secchi M, Piemonti L, de la Rosa K, Protzer U, Boehmer M, Achenbach P, Lampasona V, Bonifacio E, Ziegler A. A public health antibody screening indicates a 6-fold higher SARS-CoV-2 exposure rate than reported cases in children. Med (N Y) 2021 Feb 12;2(2):149–163.e4. doi: 10.1016/j.medj.2020.10.003. S2666-6340(20)30020-9
    1. Stringhini S, Wisniak A, Piumatti G, Azman AS, Lauer SA, Baysson H, De Ridder D, Petrovic D, Schrempft S, Marcus K, Yerly S, Arm Vernez I, Keiser O, Hurst S, Posfay-Barbe KM, Trono D, Pittet D, Gétaz L, Chappuis F, Eckerle I, Vuilleumier N, Meyer B, Flahault A, Kaiser L, Guessous I. Seroprevalence of anti-SARS-CoV-2 IgG antibodies in Geneva, Switzerland (SEROCoV-POP): A population-based study. Lancet. 2020 Aug 01;396(10247):313–319. doi: 10.1016/S0140-6736(20)31304-0. S0140-6736(20)31304-0

Source: PubMed

3
Prenumerera