First-trimester artemisinin derivatives and quinine treatments and the risk of adverse pregnancy outcomes in Africa and Asia: A meta-analysis of observational studies

Stephanie Dellicour, Esperança Sevene, Rose McGready, Halidou Tinto, Dominic Mosha, Christine Manyando, Stephen Rulisa, Meghna Desai, Peter Ouma, Martina Oneko, Anifa Vala, Maria Rupérez, Eusébio Macete, Clara Menéndez, Seydou Nakanabo-Diallo, Adama Kazienga, Innocent Valéa, Gregory Calip, Orvalho Augusto, Blaise Genton, Eric M Njunju, Kerryn A Moore, Umberto d'Alessandro, Francois Nosten, Feiko Ter Kuile, Andy Stergachis, Stephanie Dellicour, Esperança Sevene, Rose McGready, Halidou Tinto, Dominic Mosha, Christine Manyando, Stephen Rulisa, Meghna Desai, Peter Ouma, Martina Oneko, Anifa Vala, Maria Rupérez, Eusébio Macete, Clara Menéndez, Seydou Nakanabo-Diallo, Adama Kazienga, Innocent Valéa, Gregory Calip, Orvalho Augusto, Blaise Genton, Eric M Njunju, Kerryn A Moore, Umberto d'Alessandro, Francois Nosten, Feiko Ter Kuile, Andy Stergachis

Abstract

Background: Animal embryotoxicity data, and the scarcity of safety data in human pregnancies, have prevented artemisinin derivatives from being recommended for malaria treatment in the first trimester except in lifesaving circumstances. We conducted a meta-analysis of prospective observational studies comparing the risk of miscarriage, stillbirth, and major congenital anomaly (primary outcomes) among first-trimester pregnancies treated with artemisinin derivatives versus quinine or no antimalarial treatment.

Methods and findings: Electronic databases including Medline, Embase, and Malaria in Pregnancy Library were searched, and investigators contacted. Five studies involving 30,618 pregnancies were included; four from sub-Saharan Africa (n = 6,666 pregnancies, six sites) and one from Thailand (n = 23,952). Antimalarial exposures were ascertained by self-report or active detection and confirmed by prescriptions, clinic cards, and outpatient registers. Cox proportional hazards models, accounting for time under observation and gestational age at enrollment, were used to calculate hazard ratios. Individual participant data (IPD) meta-analysis was used to combine the African studies, and the results were then combined with those from Thailand using aggregated data meta-analysis with a random effects model. There was no difference in the risk of miscarriage associated with the use of artemisinins anytime during the first trimester (n = 37/671) compared with quinine (n = 96/945; adjusted hazard ratio [aHR] = 0.73 [95% CI 0.44, 1.21], I2 = 0%, p = 0.228), in the risk of stillbirth (artemisinins, n = 10/654; quinine, n = 11/615; aHR = 0.29 [95% CI 0.08-1.02], p = 0.053), or in the risk of miscarriage and stillbirth combined (pregnancy loss) (aHR = 0.58 [95% CI 0.36-1.02], p = 0.099). The corresponding risks of miscarriage, stillbirth, and pregnancy loss in a sensitivity analysis restricted to artemisinin exposures during the embryo sensitive period (6-12 wk gestation) were as follows: aHR = 1.04 (95% CI 0.54-2.01), I2 = 0%, p = 0.910; aHR = 0.73 (95% CI 0.26-2.06), p = 0.551; and aHR = 0.98 (95% CI 0.52-2.04), p = 0.603. The prevalence of major congenital anomalies was similar for first-trimester artemisinin (1.5% [95% CI 0.6%-3.5%]) and quinine exposures (1.2% [95% CI 0.6%-2.4%]). Key limitations of the study include the inability to control for confounding by indication in the African studies, the paucity of data on potential confounders, the limited statistical power to detect differences in congenital anomalies, and the lack of assessment of cardiovascular defects in newborns.

Conclusions: Compared to quinine, artemisinin treatment in the first trimester was not associated with an increased risk of miscarriage or stillbirth. While the data are limited, they indicate no difference in the prevalence of major congenital anomalies between treatment groups. The benefits of 3-d artemisinin combination therapy regimens to treat malaria in early pregnancy are likely to outweigh the adverse outcomes of partially treated malaria, which can occur with oral quinine because of the known poor adherence to 7-d regimens.

Review registration: PROSPERO CRD42015032371.

Conflict of interest statement

Sigma Tau Industrie Farmaceutiche Riunite: AS is a co-investigator in a trial on Eurartesim dispersible in infants (6-12 months old) with uncomplicated malaria, and also received financial support for conference attendance. Medicine for Malaria Venture: AS is a member of the External Scientific Advisory Committee for the Medicine for Malaria Venture, which also provided financial support for conference attendance.

Figures

Fig 1. Flow diagram of studies and…
Fig 1. Flow diagram of studies and participants included in meta-analysis for miscarriage, stillbirth, and congenital anomaly.
ACT, artemisinin combination therapy; ANC, antenatal care; IPD, individual participant data.
Fig 2. Forest plot for aggregated data…
Fig 2. Forest plot for aggregated data meta-analysis of crude and adjusted hazard ratios for the association between different antimalarial exposure categories and miscarriage.
HRs account for pregnancy week under observation through left truncation and treat exposure as a time-dependent variable. I2 values are for IPD from Africa only: a26.4%; b26.0%; c23.9%; d30.5%; e26.1%; f28.9%. Crude HRs are adjusted for clustering by site in the IPD arm. aHRs for IPD from Africa account for site, woman’s age, and gravidity. aHRs for the SMRU account for smoking, year of first consultation, gravidity, and non-malaria febrile morbidity in first trimester for the comparison with the unexposed group, while the comparison between the artemisinin and quinine groups accounts for infection severity (asymptomatic, symptomatic, hyperparasitemic/severe), year of first consultation, and non-malaria febrile morbidity in the first trimester. aHR, adjusted hazard ratio; HR, hazard ratio; IPD, individual patient data; SMRU, Shoklo Malaria Research Unit.
Fig 3. Forest plot for aggregated data…
Fig 3. Forest plot for aggregated data meta-analysis of crude and adjusted hazard ratios for the association between different antimalarial exposure categories and stillbirth.
HRs account for pregnancy week under observation through left truncation and treat exposure as a time-dependent variable. I2 values are for IPD from Africa only: a26.0%; b27.4%; c26.1%; d28.3%; e20.5%; f27.0%. Crude HRs are adjusted for clustering by site. aHRs for IPD from Africa account for site, woman’s age, and gravidity. aHRs for the SMRU account for smoking, year of first consultation, gravidity, and non-malaria febrile morbidity in the first trimester for the comparison with the unexposed group. aHR, adjusted hazard ratio; HR, hazard ratio; IPD, individual patient data; SMRU, Shoklo Malaria Research Unit.

References

    1. World Health Organization. Guidelines for the treatment of malaria. Third edition Geneva: World Health Organization; 2015.
    1. Clark R, Kumemura M, Makori N, Nakata Y, Bernard F, Harrell A, et al. Artesunate: developmental toxicity in monkeys. Birth Defects Res A Clin Mol Teratol. 2006;76:329.
    1. Clark RL. Embryotoxicity of the artemisinin antimalarials and potential consequences for use in women in the first trimester. Reprod Toxicol. 2009;28(3):285–96. doi:
    1. Clark RL, Arima A, Makori N, Nakata Y, Bernard F, Gristwood W, et al. Artesunate: developmental toxicity and toxicokinetics in monkeys. Birth Defects Res B Dev Reprod Toxicol. 2008;83(4):418–34. doi:
    1. Clark RL, Lerman SA, Cox EM, Gristwood WE, White TE. Developmental toxicity of artesunate in the rat: comparison to other artemisinins, comparison of embryotoxicity and kinetics by oral and intravenous routes, and relationship to maternal reticulocyte count. Birth Defects Res B Dev Reprod Toxicol. 2008;83(4):397–406. doi:
    1. Clark RL, White TE, Clode SA, Gaunt I, Winstanley P, Ward SA. Developmental toxicity of artesunate and an artesunate combination in the rat and rabbit. Birth Defects Res B Dev Reprod Toxicol. 2004;71(6):380–94. doi:
    1. Ejiofor JI, Kwanashie HO, Anuka JA. Some pregnancy-related effects of artemether in laboratory animals. Pharmacology. 2006;77(4):166–70. doi:
    1. El-Dakdoky MH. Evaluation of the developmental toxicity of artemether during different phases of rat pregnancy. Food Chem Toxicol. 2009;47(7):1437–41. doi:
    1. Longo M, Zanoncelli S, Torre PD, Riflettuto M, Cocco F, Pesenti M, et al. In vivo and in vitro investigations of the effects of the antimalarial drug dihydroartemisinin (DHA) on rat embryos. Reprod Toxicol. 2006;22(4):797–810. doi:
    1. White TE, Clark RL. Sensitive periods for developmental toxicity of orally administered artesunate in the rat. Birth Defects Res B Dev Reprod Toxicol. 2008;83(4):407–17. doi:
    1. Clark RL. Effects of artemisinins on reticulocyte count and relationship to possible embryotoxicity in confirmed and unconfirmed malarial patients. Birth Defects Res A Clin Mol Teratol. 2012;94(2):61–75. doi:
    1. Li Q, Weina PJ. Severe embryotoxicity of artemisinin derivatives in experimental animals, but possibly safe in pregnant women. Molecules. 2010;15(1):40–57.
    1. World Health Organization, Special Programme for Research & Training in Tropical Diseases. Assessment of the safety of artemisinin compounds in pregnancy. WHO/GMP/TDR/Artemisinin/07.1 Geneva: World Health Organization; 2007.
    1. Brabin BJ. An analysis of malaria in pregnancy in Africa. Bull World Health Organ. 1983;61(6):1005–16.
    1. Luxemburger C, Ricci F, Nosten F, Raimond D, Bathet S, White NJ. The epidemiology of severe malaria in an area of low transmission in Thailand. Trans R Soc Trop Med Hyg. 1997;91(3):256–62.
    1. Steketee RW, Nahlen BL, Parise ME, Menendez C. The burden of malaria in pregnancy in malaria-endemic areas. Am J Trop Med Hyg. 2001;64(1–2 Suppl):28–35.
    1. Desai M, ter Kuile FO, Nosten F, McGready R, Asamoa K, Brabin B, et al. Epidemiology and burden of malaria in pregnancy. Lancet Infect Dis. 2007;7(2):93–104. doi:
    1. Guyatt HL, Snow RW. The epidemiology and burden of Plasmodium falciparum-related anemia among pregnant women in sub-Saharan Africa. Am J Trop Med Hyg. 2001;64(1–2 Suppl):36–44.
    1. Burger RJ, van Eijk AM, Bussink M, Hill J, Ter Kuile FO. Artemisinin-based combination therapy versus quinine or other combinations for treatment of uncomplicated Plasmodium falciparum malaria in the second and third trimester of pregnancy: a systematic review and meta-analysis. Open Forum Infect Dis. 2016;3(1):ofv170 doi:
    1. Kioko U, Riley C, Dellicour S, Were V, Ouma P, Gutman J, et al. A cross-sectional study of the availability and price of anti-malarial medicines and malaria rapid diagnostic tests in private sector retail drug outlets in rural Western Kenya, 2013. Malar J. 2016;15(1):359 doi:
    1. van Geertruyden JP, Thomas F, Erhart A, D’Alessandro U. The contribution of malaria in pregnancy to perinatal mortality. Am J Trop Med Hyg. 2004;71(2 Suppl):35–40.
    1. Huynh BT, Cottrell G, Cot M, Briand V. Burden of malaria in early pregnancy: a neglected problem? Clin Infect Dis. 2015;60(4):598–604. doi:
    1. McGready R, Lee SJ, Wiladphaingern J, Ashley EA, Rijken MJ, Boel M, et al. Adverse effects of falciparum and vivax malaria and the safety of antimalarial treatment in early pregnancy: a population-based study. Lancet Infect Dis. 2012;12(5):388–96. doi:
    1. Moore KA, Simpson JA, Paw MK, Pimanpanarak M, Wiladphaingern J, Rijken MJ, et al. Safety of artemisinins in first trimester of prospectively followed pregnancies: an observational study. Lancet Infect Dis. 2016;16(5):576–83. doi:
    1. World Health Organization. A practical handbook on the pharmacovigilance of antimalarial medicines. Geneva: World Health Organization; 2008.
    1. Riley RD, Lambert PC, Abo-Zaid G. Meta-analysis of individual participant data: rationale, conduct, and reporting. BMJ. 2010;340:c221 doi:
    1. Stewart LA, Clarke M, Rovers M, Riley RD, Simmonds M, Stewart G, et al. Preferred reporting items for systematic review and meta-analyses of individual participant data: the PRISMA-IPD statement. JAMA. 2015;313(16):1657–65. doi:
    1. Haynes B. Forming research questions In: Haynes RB, Sackett DL, Guyatt GH, Tugwell P, editors. Clinical epidemiology: how to do clinical practice research. Philadelphia: Lippincott Williams & Wilkins; 2006.
    1. Wells GA, Shea B, O’Connell D, Peterson J, Welch V, Losos M, et al. The Newcastle-Ottawa Scale (NOS) for assessing the quality if nonrandomized studies in meta-analyses Ottawa: Ottawa Hospital Research Institute; 2014. [cited 2017 Mar 28]. Available from: .
    1. Dellicour S, Desai M, Aol G, Oneko M, Ouma P, Bigogo G, et al. Risks of miscarriage and inadvertent exposure to artemisinin derivatives in the first trimester of pregnancy: a prospective study in western Kenya. Malar J. 2015;14(1):461.
    1. Mehta U, Clerk C, Allen E, Yore M, Sevene E, Singlovic J, et al. Protocol for a drugs exposure pregnancy registry for implementation in resource-limited settings. BMC Pregnancy Childbirth. 2012;12:89 doi:
    1. Holmes LB, Westgate MN. Inclusion and exclusion criteria for malformations in newborn infants exposed to potential teratogens. Birth Defects Res A Clin Mol Teratol. 2011;91(9):807–12. doi:
    1. Scheuerle A, Tilson H. Birth defect classification by organ system: a novel approach to heighten teratogenic signalling in a pregnancy registry. Pharmacoepidemiol Drug Saf. 2002;11(6):465–75. doi:
    1. McGready R, Kang J, Watts I, Tyrosvoutis ME, Torchinsky MB, Htut AM, et al. Audit of antenatal screening for syphilis and HIV in migrant and refugee women on the Thai-Myanmar border: a descriptive study. F1000Res. 2014;3:123 doi:
    1. Tinto H, Sevene E, Dellicour S, Macete E, d’Alessandro U, ter Kuile FO, et al. Assessment of the safety of antimalarial drug use during early pregnancy: protocol for a multicenter prospective cohort study in Burkina Faso, Kenya and Mozambique. Reprod Health. 2015;12:112 doi:
    1. Manyando C, Mkandawire R, Puma L, Sinkala M, Mpabalwani E, Njunju E, et al. Safety of artemether-lumefantrine in pregnant women with malaria: results of a prospective cohort study in Zambia. Malar J. 2010;9:249 doi:
    1. Mosha D, Mazuguni F, Mrema S, Sevene E, Abdulla S, Genton B. Safety of artemether-lumefantrine exposure in first trimester of pregnancy: an observational cohort. Malar J. 2014;13(1):197.
    1. Rulisa S, Kaligirwa N, Agaba S, Karema C, Mens PF, de Vries PJ. Pharmacovigilance of artemether-lumefantrine in pregnant women followed until delivery in Rwanda. Malar J. 2012;11:225 doi:
    1. Poespoprodjo JR, Fobia W, Kenangalem E, Lampah DA, Sugiarto P, Tjitra E, et al. Dihydroartemisinin-piperaquine treatment of multidrug resistant falciparum and vivax malaria in pregnancy. PLoS ONE. 2014;9(1):e84976 doi:
    1. Achan J, Talisuna AO, Erhart A, Yeka A, Tibenderana JK, Baliraine FN, et al. Quinine, an old anti-malarial drug in a modern world: role in the treatment of malaria. Malar J. 2011;10:144 doi:
    1. Hill J, D’Mello-Guyett L, Hoyt J, van Eijk AM, ter Kuile FO, Webster J. Women’s access and provider practices for the case management of malaria during pregnancy: a systematic review and meta-analysis. PLoS Med. 2014;11(8):e1001688 doi:
    1. Sangaré L, Weiss N, Brentlinger P, Richardson B, Staedke S, Kiwuwa M, et al. Patterns of antimalarial drug treatment among pregnant women in Uganda. Malar J. 2011;10:152 doi:
    1. Sinclair D, Donegan S, Isba R, Lalloo DG. Artesunate versus quinine for treating severe malaria. Cochrane Database Syst Rev. 2012;6:CD005967.
    1. Nosten F, McGready R, d’Alessandro U, Bonell A, Verhoeff F, Menendez C, et al. Antimalarial drugs in pregnancy: a review. Curr Drug saf. 2006;1(1):1–15.
    1. Obonyo CO, Juma EA. Clindamycin plus quinine for treating uncomplicated falciparum malaria: a systematic review and meta-analysis. Malar J. 2012;11:2 doi:
    1. Dellicour S, ter Kuile FO, Stergachis A. Pregnancy exposure registries for assessing antimalarial drug safety in pregnancy in malaria-endemic countries. PLoS Med. 2008;5(9):e187 doi:
    1. Howards PP, Hertz-Picciotto I, Poole C. Conditions for bias from differential left truncation. Am J Epidemiol. 2007;165(4):444–52.
    1. Margulis AV, Mittleman MA, Glynn RJ, Holmes LB, Hernandez-Diaz S. Effects of gestational age at enrollment in pregnancy exposure registries. Pharmacoepidemiol Drug Saf. 2015;24(4):343–52. doi:
    1. Dellicour S, Tatem AJ, Guerra CA, Snow RW, ter Kuile FO. Quantifying the number of pregnancies at risk of malaria in 2007: a demographic study. PLoS Med. 2010;7(1):e1000221 doi:

Source: PubMed

3
Prenumerera