Deep Sequencing Reveals Central Nervous System Compartmentalization in Multiple Transmitted/Founder Virus Acute HIV-1 Infection

Sodsai Tovanabutra, Rujipas Sirijatuphat, Phuc T Pham, Lydia Bonar, Elizabeth A Harbolick, Meera Bose, Hongshuo Song, David Chang, Celina Oropeza, Anne Marie O'Sullivan, Joyce Balinang, Eugene Kroon, Donn J Colby, Carlo Sacdalan, Joanna Hellmuth, Phillip Chan, Peeriya Prueksakaew, Suteeraporn Pinyakorn, Linda L Jagodzinski, Duanghathai Sutthichom, Suwanna Pattamaswin, Mark de Souza, Robert A Gramzinski, Jerome H Kim, Nelson L Michael, Merlin L Robb, Nittaya Phanuphak, Jintanat Ananworanich, Victor Valcour, Gustavo H Kijak, Eric Sanders-Buell, Serena Spudich, MHRP Viral Sequencing Core, RV254/SEARCH 010 Study Team, Sodsai Tovanabutra, Rujipas Sirijatuphat, Phuc T Pham, Lydia Bonar, Elizabeth A Harbolick, Meera Bose, Hongshuo Song, David Chang, Celina Oropeza, Anne Marie O'Sullivan, Joyce Balinang, Eugene Kroon, Donn J Colby, Carlo Sacdalan, Joanna Hellmuth, Phillip Chan, Peeriya Prueksakaew, Suteeraporn Pinyakorn, Linda L Jagodzinski, Duanghathai Sutthichom, Suwanna Pattamaswin, Mark de Souza, Robert A Gramzinski, Jerome H Kim, Nelson L Michael, Merlin L Robb, Nittaya Phanuphak, Jintanat Ananworanich, Victor Valcour, Gustavo H Kijak, Eric Sanders-Buell, Serena Spudich, MHRP Viral Sequencing Core, RV254/SEARCH 010 Study Team

Abstract

HIV-1 disseminates to a broad range of tissue compartments during acute HIV-1 infection (AHI). The central nervous system (CNS) can serve as an early and persistent site of viral replication, which poses a potential challenge for HIV-1 remission strategies that target the HIV reservoir. CNS compartmentalization is a key feature of HIV-1 neuropathogenesis. Thus far, the timing of how early CNS compartmentalization develops after infection is unknown. We examined whether HIV-1 transmitted/founder (T/F) viruses differ between CNS and blood during AHI using single-genome sequencing of envelope gene and further examined subregions in pol and env using next-generation sequencing in paired plasma and cerebrospinal fluid (CSF) from 18 individuals. Different proportions of mostly minor variants were found in six of the eight multiple T/F-infected individuals, indicating enrichment of some variants in CSF that may lead to significant compartmentalization in the later stages of infection. This study provides evidence for the first time that HIV-1 compartmentalization in the CNS can occur within days of HIV-1 exposure in multiple T/F infections. Further understanding of factors that determine enrichment of T/F variants in the CNS, as well as potential long-term implications of these findings for persistence of HIV-1 reservoirs and neurological impairment in HIV, is needed.

Trial registration: ClinicalTrials.gov NCT00796146.

Keywords: HIV-1; acute HIV-1 infection (AHI); central nervous system (CNS); cerebrospinal fluid (CSF); compartmentalization; multiple infections; next-generation sequencing (NGS); single-genome amplification (SGA); transmitted/founder (T/F) virus.

Conflict of interest statement

The authors declare no conflict of interest. G.H.K is currently employed by GSK Vaccines but his participation in this study precedes the current employment.

Figures

Figure 1
Figure 1
Maximum likelihood tree of envelope gp160 gene sequences. Sequences were retrieved from participant plasma (circle symbol) and cerebrospinal fluid (CSF) (triangle symbol). Reference sequences include HXB2 and CM244 (GenBank accession K03455 and AY713425, respectively).
Figure 2
Figure 2
Proportions of plasma and CSF variants from three multiple transmitted/founder (T/F)-infected participants observed by next-generation sequencing platforms: participant 2547279, participant 2546340, and participant 2549813.
Figure 2
Figure 2
Proportions of plasma and CSF variants from three multiple transmitted/founder (T/F)-infected participants observed by next-generation sequencing platforms: participant 2547279, participant 2546340, and participant 2549813.

References

    1. Ananworanich J., Schuetz A., Vandergeeten C., Sereti I., de Souza M., Rerknimitr R., Dewar R., Marovich M., van Griensven F., Sekaly R., et al. Impact of multi-targeted antiretroviral treatment on gut T cell depletion and HIV reservoir seeding during acute HIV infection. PLoS ONE. 2012;7:e33948. doi: 10.1371/journal.pone.0033948.
    1. Valcour V., Chalermchai T., Sailasuta N., Marovich M., Lerdlum S., Suttichom D., Suwanwela N.C., Jagodzinski L., Michael N., Spudich S., et al. Central nervous system viral invasion and inflammation during acute HIV infection. J. Infect. Dis. 2012;206:275–282. doi: 10.1093/infdis/jis326.
    1. Saksena N.K., Wang B., Zhou L., Soedjono M., Ho Y.S., Conceicao V. HIV reservoirs in vivo and new strategies for possible eradication of HIV from the reservoir sites. HIV/AIDS. 2010;2:103–122. doi: 10.2147/HIV.S6882.
    1. Fletcher C.V., Staskus K., Wietgrefe S.W., Rothenberger M., Reilly C., Chipman J.G., Beilman G.J., Khoruts A., Thorkelson A., Schmidt T.E., et al. Persistent HIV-1 replication is associated with lower antiretroviral drug concentrations in lymphatic tissues. Proc. Natl. Acad. Sci. USA. 2014;111:2307–2312. doi: 10.1073/pnas.1318249111.
    1. Peluso M.J., Ferretti F., Peterson J., Lee E., Fuchs D., Boschini A., Gisslen M., Angoff N., Price R.W., Cinque P., et al. Cerebrospinal fluid HIV escape associated with progressive neurologic dysfunction in patients on antiretroviral therapy with well controlled plasma viral load. AIDS. 2012;26:1765–1774. doi: 10.1097/QAD.0b013e328355e6b2.
    1. Bednar M.M., Sturdevant C.B., Tompkins L.A., Arrildt K.T., Dukhovlinova E., Kincer L.P., Swanstrom R. Compartmentalization, Viral Evolution, and Viral Latency of HIV in the CNS. Curr. HIV/AIDS Rep. 2015;12:262–271. doi: 10.1007/s11904-015-0265-9.
    1. Svicher V., Ceccherini-Silberstein F., Antinori A., Aquaro S., Perno C.F. Understanding HIV compartments and reservoirs. Curr. HIV/AIDS Rep. 2014;11:186–194. doi: 10.1007/s11904-014-0207-y.
    1. Klein K., Nickel G., Nankya I., Kyeyune F., Demers K., Ndashimye E., Kwok C., Chen P.L., Rwambuya S., Poon A., et al. Higher sequence diversity in the vaginal tract than in blood at early HIV-1 infection. PLoS Pathog. 2018;14:e1006754. doi: 10.1371/journal.ppat.1006754.
    1. Yuan Z., Ma F., Demers A.J., Wang D., Xu J., Lewis M.G., Li Q. Characterization of founder viruses in very early SIV rectal transmission. Virology. 2017;502:97–105. doi: 10.1016/j.virol.2016.12.018.
    1. Gonzalez-Scarano F., Martin-Garcia J. The neuropathogenesis of AIDS. Nat. Rev. Immunol. 2005;5:69–81. doi: 10.1038/nri1527.
    1. Schnell G., Joseph S., Spudich S., Price R.W., Swanstrom R. HIV-1 replication in the central nervous system occurs in two distinct cell types. PLoS Pathog. 2011;7:e1002286. doi: 10.1371/journal.ppat.1002286.
    1. Ritola K., Robertson K., Fiscus S.A., Hall C., Swanstrom R. Increased human immunodeficiency virus type 1 (HIV-1) env compartmentalization in the presence of HIV-1-associated dementia. J. Virol. 2005;79:10830–10834. doi: 10.1128/JVI.79.16.10830-10834.2005.
    1. Heaton R.K., Clifford D.B., Franklin D.R., Jr., Woods S.P., Ake C., Vaida F., Ellis R.J., Letendre S.L., Marcotte T.D., Atkinson J.H., et al. HIV-associated neurocognitive disorders persist in the era of potent antiretroviral therapy: CHARTER Study. Neurology. 2010;75:2087–2096. doi: 10.1212/WNL.0b013e318200d727.
    1. Harrington P.R., Schnell G., Letendre S.L., Ritola K., Robertson K., Hall C., Burch C.L., Jabara C.B., Moore D.T., Ellis R.J., et al. Cross-sectional characterization of HIV-1 env compartmentalization in cerebrospinal fluid over the full disease course. AIDS. 2009;23:907–915. doi: 10.1097/QAD.0b013e3283299129.
    1. Sturdevant C.B., Dow A., Jabara C.B., Joseph S.B., Schnell G., Takamune N., Mallewa M., Heyderman R.S., Van Rie A., Swanstrom R. Central nervous system compartmentalization of HIV-1 subtype C variants early and late in infection in young children. PLoS Pathog. 2012;8:e1003094. doi: 10.1371/journal.ppat.1003094.
    1. Sturdevant C.B., Joseph S.B., Schnell G., Price R.W., Swanstrom R., Spudich S. Compartmentalized replication of R5 T cell-tropic HIV-1 in the central nervous system early in the course of infection. PLoS Pathog. 2015;11:e1004720. doi: 10.1371/journal.ppat.1004720.
    1. Dahl V., Gisslen M., Hagberg L., Peterson J., Shao W., Spudich S., Price R.W., Palmer S. An example of genetically distinct HIV type 1 variants in cerebrospinal fluid and plasma during suppressive therapy. J. Infect. Dis. 2014;209:1618–1622. doi: 10.1093/infdis/jit805.
    1. Kijak G.H., Sanders-Buell E., Chenine A.L., Eller M.A., Goonetilleke N., Thomas R., Leviyang S., Harbolick E.A., Bose M., Pham P., et al. Rare HIV-1 transmitted/founder lineages identified by deep viral sequencing contribute to rapid shifts in dominant quasispecies during acute and early infection. PLoS Pathog. 2017;13:e1006510. doi: 10.1371/journal.ppat.1006510.
    1. Poss M., Rodrigo A.G., Gosink J.J., Learn G.H., de Vange Panteleeff D., Martin H.L., Jr., Bwayo J., Kreiss J.K., Overbaugh J. Evolution of envelope sequences from the genital tract and peripheral blood of women infected with clade A human immunodeficiency virus type 1. J. Virol. 1998;72:8240–8251.
    1. Salazar-Gonzalez J.F., Bailes E., Pham K.T., Salazar M.G., Guffey M.B., Keele B.F., Derdeyn C.A., Farmer P., Hunter E., Allen S., et al. Deciphering human immunodeficiency virus type 1 transmission and early envelope diversification by single-genome amplification and sequencing. J. Virol. 2008;82:3952–3970. doi: 10.1128/JVI.02660-07.
    1. Kijak G.H., Sanders-Buell E., Harbolick E.A., Pham P., Chenine A.L., Eller L.A., Rono K., Robb M.L., Michael N.L., Kim J.H., et al. Targeted deep sequencing of HIV-1 using the IonTorrentPGM platform. J. Virol. Methods. 2014;205:7–16. doi: 10.1016/j.jviromet.2014.04.017.
    1. HIV Databases. [(accessed on 18 July 2019)]; Available online:
    1. Keele B.F., Giorgi E.E., Salazar-Gonzalez J.F., Decker J.M., Pham K.T., Salazar M.G., Sun C., Grayson T., Wang S., Li H., et al. Identification and characterization of transmitted and early founder virus envelopes in primary HIV-1 infection. Proc. Natl. Acad. Sci. USA. 2008;105:7552–7557. doi: 10.1073/pnas.0802203105.
    1. Rozanov M., Plikat U., Chappey C., Kochergin A., Tatusova T. A web-based genotyping resource for viral sequences. Nucleic Acids Res. 2004;32:W654–W659. doi: 10.1093/nar/gkh419.
    1. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S. MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evo. 2011;28:2731–2739. doi: 10.1093/molbev/msr121.
    1. Lassmann T., Hayashizaki Y., Daub C.O. SAMStat: Monitoring biases in next generation sequencing data. Bioinformatics. 2011;27:130–131. doi: 10.1093/bioinformatics/btq614.
    1. Kijak G.H., Pham P., Sanders-Buell E., Harbolick E.A., Eller L.A., Robb M.L., Michael N.L., Kim J.H., Tovanabutra S. Nautilus: A bioinformatics package for the analysis of HIV type 1 targeted deep sequencing data. AIDS Res. Hum. Retrovir. 2013;29:1361–1364. doi: 10.1089/aid.2013.0175.
    1. Milne I., Stephen G., Bayer M., Cock P.J., Pritchard L., Cardle L., Shaw P.D., Marshall D. Using Tablet for visual exploration of second-generation sequencing data. Brief. Bioinform. 2013;14:193–202. doi: 10.1093/bib/bbs012.
    1. Sedlazeck F.J., Rescheneder P., Smolka M., Fang H., Nattestad M., von Haeseler A., Schatz M.C. Accurate detection of complex structural variations using single-molecule sequencing. Nat. Methods. 2018;15:461–468. doi: 10.1038/s41592-018-0001-7.
    1. Pacific Biosciences MinorSeq. [(accessed on 18 July 2019)]; Available online: .
    1. Li H., Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics. 2009;25:1754–1760. doi: 10.1093/bioinformatics/btp324.
    1. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 1980;16:111–120. doi: 10.1007/BF01731581.
    1. Willey R.L., Rutledge R.A., Dias S., Folks T., Theodore T., Buckler C.E., Martin M.A. Identification of conserved and divergent domains within the envelope gene of the acquired immunodeficiency syndrome retrovirus. Proc. Natl. Acad. Sci. USA. 1986;83:5038–5042. doi: 10.1073/pnas.83.14.5038.
    1. Davis L.E., Hjelle B.L., Miller V.E., Palmer D.L., Llewellyn A.L., Merlin T.L., Young S.A., Mills R.G., Wachsman W., Wiley C.A. Early viral brain invasion in iatrogenic human immunodeficiency virus infection. Neurology. 1992;42:1736–1739. doi: 10.1212/WNL.42.9.1736.
    1. Pilcher C.D., Shugars D.C., Fiscus S.A., Miller W.C., Menezes P., Giner J., Dean B., Robertson K., Hart C.E., Lennox J.L., et al. HIV in body fluids during primary HIV infection: Implications for pathogenesis, treatment and public health. AIDS. 2001;15:837–845. doi: 10.1097/00002030-200105040-00004.
    1. Kaul M. HIV-1 associated dementia: Update on pathological mechanisms and therapeutic approaches. Curr. Opin. Neurol. 2009;22:315–320. doi: 10.1097/WCO.0b013e328329cf3c.
    1. Lamers S.L., Rose R., Ndhlovu L.C., Nolan D.J., Salemi M., Maidji E., Stoddart C.A., McGrath M.S. The meningeal lymphatic system: A route for HIV brain migration? J. Neurovirol. 2016;22:275–281. doi: 10.1007/s13365-015-0399-y.
    1. Campbell J.H., Ratai E.M., Autissier P., Nolan D.J., Tse S., Miller A.D., Gonzalez R.G., Salemi M., Burdo T.H., Williams K.C. Anti-alpha4 antibody treatment blocks virus traffic to the brain and gut early, and stabilizes CNS injury late in infection. PLoS Pathog. 2014;10:e1004533. doi: 10.1371/journal.ppat.1004533.
    1. Joseph S.B., Arrildt K.T., Swanstrom A.E., Schnell G., Lee B., Hoxie J.A., Swanstrom R. Quantification of entry phenotypes of macrophage-tropic HIV-1 across a wide range of CD4 densities. J. Virol. 2014;88:1858–1869. doi: 10.1128/JVI.02477-13.
    1. Evering T.H., Kamau E., St Bernard L., Farmer C.B., Kong X.P., Markowitz M. Single genome analysis reveals genetic characteristics of Neuroadaptation across HIV-1 envelope. Retrovirology. 2014;11:65. doi: 10.1186/s12977-014-0065-0.
    1. Holman A.G., Gabuzda D. A machine learning approach for identifying amino acid signatures in the HIV env gene predictive of dementia. PLoS ONE. 2012;7:e49538. doi: 10.1371/journal.pone.0049538.
    1. Balinang J., Chang D., Jobe O., Sanders-Buell E., Chenine A., Mann B., Merbah M., Alvarez-Carbonell D., Bose M., Barrows B., et al. Differential Infection of Cultured Peripheral and CNS Cells by Distinct Transmitted/Founder HIV-1 Infectious Molecular Clones; Proceedings of the HIV Research for Prevention (HIVR4P 2018); Madrid, Spain. 21–25 October 2018.
    1. Evans D.T., O’Connor D.H., Jing P., Dzuris J.L., Sidney J., da Silva J., Allen T.M., Horton H., Venham J.E., Rudersdorf R.A., et al. Virus-specific cytotoxic T-lymphocyte responses select for amino-acid variation in simian immunodeficiency virus Env and Nef. Nat. Med. 1999;5:1270–1276. doi: 10.1038/15224.
    1. Ho E.L., Ronquillo R., Altmeppen H., Spudich S.S., Price R.W., Sinclair E. Cellular Composition of Cerebrospinal Fluid in HIV-1 Infected and Uninfected Subjects. PLoS ONE. 2013;8:e66188. doi: 10.1371/journal.pone.0066188.
    1. Kessing C.F., Spudich S., Valcour V., Cartwright P., Chalermchai T., Fletcher J.L., Takata H., Nichols C., Josey B.J., Slike B., et al. High Number of Activated CD8+ T Cells Targeting HIV Antigens Are Present in Cerebrospinal Fluid in Acute HIV Infection. J. Acquir. Immune Defic. Syndr. 2017;75:108–117. doi: 10.1097/QAI.0000000000001301.
    1. Cinque P., Brew B.J., Gisslen M., Hagberg L., Price R.W. Cerebrospinal fluid markers in central nervous system HIV infection and AIDS dementia complex. Handb. Clin. Neurol. 2007;85:261–300. doi: 10.1016/S0072-9752(07)85017-2.

Source: PubMed

3
Prenumerera