Serelaxin as a potential treatment for renal dysfunction in cirrhosis: Preclinical evaluation and results of a randomized phase 2 trial

Victoria K Snowdon, Neil J Lachlan, Anna M Hoy, Patrick W F Hadoke, Scott I Semple, Dilip Patel, Will Mungall, Timothy J Kendall, Adrian Thomson, Ross J Lennen, Maurits A Jansen, Carmel M Moran, Antonella Pellicoro, Prakash Ramachandran, Isaac Shaw, Rebecca L Aucott, Thomas Severin, Rajnish Saini, Judy Pak, Denise Yates, Neelesh Dongre, Jeremy S Duffield, David J Webb, John P Iredale, Peter C Hayes, Jonathan A Fallowfield, Victoria K Snowdon, Neil J Lachlan, Anna M Hoy, Patrick W F Hadoke, Scott I Semple, Dilip Patel, Will Mungall, Timothy J Kendall, Adrian Thomson, Ross J Lennen, Maurits A Jansen, Carmel M Moran, Antonella Pellicoro, Prakash Ramachandran, Isaac Shaw, Rebecca L Aucott, Thomas Severin, Rajnish Saini, Judy Pak, Denise Yates, Neelesh Dongre, Jeremy S Duffield, David J Webb, John P Iredale, Peter C Hayes, Jonathan A Fallowfield

Abstract

Background: Chronic liver scarring from any cause leads to cirrhosis, portal hypertension, and a progressive decline in renal blood flow and renal function. Extreme renal vasoconstriction characterizes hepatorenal syndrome, a functional and potentially reversible form of acute kidney injury in patients with advanced cirrhosis, but current therapy with systemic vasoconstrictors is ineffective in a substantial proportion of patients and is limited by ischemic adverse events. Serelaxin (recombinant human relaxin-2) is a peptide molecule with anti-fibrotic and vasoprotective properties that binds to relaxin family peptide receptor-1 (RXFP1) and has been shown to increase renal perfusion in healthy human volunteers. We hypothesized that serelaxin could ameliorate renal vasoconstriction and renal dysfunction in patients with cirrhosis and portal hypertension.

Methods and findings: To establish preclinical proof of concept, we developed two independent rat models of cirrhosis that were characterized by progressive reduction in renal blood flow and glomerular filtration rate and showed evidence of renal endothelial dysfunction. We then set out to further explore and validate our hypothesis in a phase 2 randomized open-label parallel-group study in male and female patients with alcohol-related cirrhosis and portal hypertension. Forty patients were randomized 1:1 to treatment with serelaxin intravenous (i.v.) infusion (for 60 min at 80 μg/kg/d and then 60 min at 30 μg/kg/d) or terlipressin (single 2-mg i.v. bolus), and the regional hemodynamic effects were quantified by phase contrast magnetic resonance angiography at baseline and after 120 min. The primary endpoint was the change from baseline in total renal artery blood flow. Therapeutic targeting of renal vasoconstriction with serelaxin in the rat models increased kidney perfusion, oxygenation, and function through reduction in renal vascular resistance, reversal of endothelial dysfunction, and increased activation of the AKT/eNOS/NO signaling pathway in the kidney. In the randomized clinical study, infusion of serelaxin for 120 min increased total renal arterial blood flow by 65% (95% CI 40%, 95%; p < 0.001) from baseline. Administration of serelaxin was safe and well tolerated, with no detrimental effect on systemic blood pressure or hepatic perfusion. The clinical study's main limitations were the relatively small sample size and stable, well-compensated population.

Conclusions: Our mechanistic findings in rat models and exploratory study in human cirrhosis suggest the therapeutic potential of selective renal vasodilation using serelaxin as a new treatment for renal dysfunction in cirrhosis, although further validation in patients with more advanced cirrhosis and renal dysfunction is required.

Trial registration: ClinicalTrials.gov NCT01640964.

Conflict of interest statement

PCH has received consultancy fees from Novartis and GORE. JAF has received consultancy fees from Merck and Novartis and research grant funding from GlaxoSmithKline. TS, JP, DY and ND are currently employees of Novartis and own either Novartis stocks or shares. TS, RS, JP, DY, and ND contributed to the Phase 2 trial of Serelaxin as Novartis associates but played no role in the independent preclinical research. RS is currently an employee of GlaxoSmithKline. DJW is a member of a Data Safety Monitoring Board for AbbVie for a phase 3 trial with atrasentan in renal disease (institutional) and a non-executive Board member of the Medicines and Healthcare products Regulatory Agency. DJW's research is supported by BHF, MRC and Wellcome Trust. JSD owns Biogen, Vertex, Regulus and BMS stock. JSD has patents for therapies to treat acute kidney injury.

Figures

Fig 1. Rat models of advanced cirrhosis,…
Fig 1. Rat models of advanced cirrhosis, portal hypertension, and renal dysfunction.
Portal pressure (PP; A), renal blood flow (RBF; B), and glomerular filtration rate (GFR; C) in 16-wk CCl4 and olive oil (OO) control rats (n = 6–11). Representative H&E-stained kidney (scale bar 50 μm) showing minor tubular epithelial cell vacuolation (arrows) without significant necrosis after 16 wk of CCl4 (D). PP (E), RBF (F), and GFR (G) in bile duct ligation (BDL) and sham-operated (sham) control rats (n = 4–8). Representative H&E-stained kidney (scale bar 50 μm) showing necrotic cells within the tubule lumen and loss of the normal circumferential epithelial cell population (arrows) 4 wk after BDL (H). Data presented as mean ± standard error of the mean, analyzed by one-way ANOVA with post hoc Bonferroni correction (*p < 0.05; **p < 0.01; ***p < 0.001).
Fig 2. Vascular responses in isolated extrarenal…
Fig 2. Vascular responses in isolated extrarenal renal arteries from cirrhotic rats.
Concentration–response curves to acetylcholine (ACh; A and E), phenylephrine (PE; B and F), and sodium nitroprusside (SNP; C and G) in isolated extrarenal renal arteries from 16-wk CCl4 and 4-wk bile duct ligation (BDL) rats (n = 8–12). Data presented as mean ± standard error of the mean (SEM), relative to preconstricted value, analyzed by two-way ANOVA with post hoc Bonferroni correction (*p < 0.05; ***p < 0.001; NS, not significant). Nitric oxide synthase (NOS) activity in whole kidney extracts from 16-wk CCl4 (D) and 4-wk BDL (H) rats (n = 6–7). Data presented as mean ± SEM, analyzed by unpaired t-test (*p < 0.05). OO, olive oil.
Fig 3. Effect of 72-h serelaxin infusion…
Fig 3. Effect of 72-h serelaxin infusion on renal perfusion and renovascular responses in cirrhotic rats.
Relative Rxfp1 transcripts (normalized to 18S rRNA) in whole kidney extracts from 16-wk CCl4 (A) and 4-wk bile duct ligation (BDL) (E) rats (n = 3–6). Renal blood flow (RBF; B and F), mean arterial pressure (MAP; D and H), and glomerular filtration rate (GFR; C and G) in CCl4 and BDL rats after 72-h s.c. serelaxin or vehicle (n = 5–8). Data presented as mean ± standard error of the mean (SEM), analyzed by unpaired t-test (*p < 0.05; **p < 0.01; ***p < 0.001; NS, not significant). Concentration–response curves to acetylcholine (ACh; I), phenylephrine (PE; J), and sodium nitroprusside (SNP; K) in the presence of serelaxin or vehicle in 16-wk CCl4 rats (n = 5–8). Data presented as mean ± SEM, analyzed by two-way ANOVA with post hoc Bonferroni correction (*p < 0.05; **p < 0.01; ***p < 0.001). OO, olive oil.
Fig 4. Effect of sustained serelaxin infusion…
Fig 4. Effect of sustained serelaxin infusion on AKT/eNOS/NO signaling in cirrhotic rat kidney.
Quantification of p-eNOS/eNOS and p-AKT/AKT in whole kidney extracts from 72-h serelaxin- or vehicle-treated 16-wk CCl4 and 4-wk bile duct ligation (BDL) rats (n = 4) (A–F). Data presented as mean ± standard error of the mean (SEM), analyzed by unpaired t-test (*p < 0.05; **p < 0.01; ***p < 0.001). NOS activity in whole kidney extracts from CCl4 (G) and BDL (H) rats treated with serelaxin or vehicle (n = 6–8). Data presented as mean ± SEM, analyzed by unpaired t-test (*p < 0.05; **p < 0.01). Renal blood flow (RBF; I) and glomerular filtration rate (GFR; J) in 16-wk CCl4 rats co-treated with L-NG-nitroarginine methyl ester (L-NAME) (n = 4–8). Data presented as mean ± SEM, analyzed by one-way ANOVA with post hoc Bonferroni correction (*p < 0.05; **p < 0.01; ***p < 0.001). OO, olive oil.
Fig 5. Effect of acute serelaxin treatment…
Fig 5. Effect of acute serelaxin treatment on renal blood flow and tissue oxygenation in CCl4 cirrhotic rats.
Renal blood flow (RBF, A) and mean arterial pressure (MAP, B) responses to acute i.v. serelaxin (4 μg) or vehicle in 16-wk CCl4 rats (n = 5–7). Measurement of velocity time integral (C) and renal resistive index (D) following acute i.v. serelaxin (4 μg) or vehicle (n = 6–8). Deoxygenated hemoglobin levels (R2*) in renal medulla in 8-wk (E) and 16-wk (F) CCl4 rats at baseline, 30 min, and 60 min following acute i.v. serelaxin (4 μg) or vehicle (n = 5–8). Data presented as mean ± standard error of the mean, analyzed by two-way ANOVA (*p < 0.05; **p < 0.01; ***p < 0.001; NS, not significant) with post hoc Bonferroni correction to compare individual CCl4 time points with respective vehicle controls (#p < 0.05; ##p < 0.01; ###p < 0.001).
Fig 6. Flow chart of participants in…
Fig 6. Flow chart of participants in the study.
Fig 7. Differential effects of serelaxin and…
Fig 7. Differential effects of serelaxin and terlipressin treatment on splanchnic and extra-splanchnic hemodynamics.
Blood flow changes in total renal artery (left + right renal artery; A), superior abdominal aorta (B), superior mesenteric artery (C), portal vein (D), and hepatic artery (E); mean arterial pressure (MAP; F); and renal vascular resistance (G) following serelaxin infusion (60 min at 80 μg/kg/d then 60 min at 30 μg/kg/d) or terlipressin (2-mg i.v. bolus). Data presented as geometric mean ± 95% CI, analyzed by paired t-tests for within-group comparison of baseline and post-treatment flow measurements (n = 20; *p < 0.05; ***p < 0.001; NS, not significant).
Fig 8. Effect of serelaxin infusion on…
Fig 8. Effect of serelaxin infusion on pharmacokinetics and plasma biomarkers in patients with cirrhosis and portal hypertension.
Serum serelaxin concentration measured by ELISA pre-dose (0 min), at 60 min and 120 min post-initiation of serelaxin infusion, in recovery period (~60 min after cessation of serelaxin), and at 4-wk follow-up visit (A). Data presented as mean ± standard deviation (n = 20). Plasma nitrate (B), endothelin-1 (ET-1) (C), and matrix metalloproteinase-9 (MMP-9) (D) measured by ELISA pre-dose (0 min) and at 120 min after initiation of serelaxin infusion. Data presented as geometric mean ± 95% CI (n = 20). NS, not significant.

References

    1. Selby NM, Fluck RJ, Kolhe NV, Taal MW. International criteria for acute kidney injury: advantages and remaining challenges. PLoS Med. 2016;13(9):e1002122 10.1371/journal.pmed.1002122
    1. Angeli P, Rodriguez E, Piano S, Ariza X, Morando F, Sola E, et al. Acute kidney injury and acute-on-chronic liver failure classifications in prognosis assessment of patients with acute decompensation of cirrhosis. Gut. 2015;64(10):1616–22. 10.1136/gutjnl-2014-307526
    1. Besso J, Pru C, Padron J, Plaz J. Hepatorenal syndrome In: Gullo A, Lumb D, editors. Intensive and critical care medicine: reflections, recommendations and perspectives. Milan: Springer-Verlag; 2007. pp. 9–27.
    1. Martin-Llahi M, Guevara M, Torre A, Fagundes C, Restuccia T, Gilabert R, et al. Prognostic importance of the cause of renal failure in patients with cirrhosis. Gastroenterology. 2011;140(2):488–96.e4. 10.1053/j.gastro.2010.07.043
    1. Krag A, Bendtsen F, Henriksen JH, Moller S. Low cardiac output predicts development of hepatorenal syndrome and survival in patients with cirrhosis and ascites. Gut. 2010;59(1):105–10. 10.1136/gut.2009.180570
    1. Newby DE, Hayes PC. Hyperdynamic circulation in liver cirrhosis: not peripheral vasodilatation but ‘splanchnic steal’. QJM. 2002;95(12):827–30.
    1. Fernandez J, Navasa M, Planas R, Montoliu S, Monfort D, Soriano G, et al. Primary prophylaxis of spontaneous bacterial peritonitis delays hepatorenal syndrome and improves survival in cirrhosis. Gastroenterology. 2007;133(3):818–24. 10.1053/j.gastro.2007.06.065
    1. Kew MC, Brunt PW, Varma RR, Hourigan KJ, Williams HS, Sherlock S. Renal and intrarenal blood-flow in cirrhosis of the liver. Lancet. 1971;2(7723):504–10.
    1. McAvoy NC, Semple S, Richards JM, Robson AJ, Patel D, Jardine AG, et al. Differential visceral blood flow in the hyperdynamic circulation of patients with liver cirrhosis. Aliment Pharmacol Ther. 2016;43(9):947–54. 10.1111/apt.13571
    1. Stadlbauer V, Wright GA, Banaji M, Mukhopadhya A, Mookerjee RP, Moore K, et al. Relationship between activation of the sympathetic nervous system and renal blood flow autoregulation in cirrhosis. Gastroenterology. 2008;134(1):111–9. 10.1053/j.gastro.2007.10.055
    1. Alessandria C, Ozdogan O, Guevara M, Restuccia T, Jimenez W, Arroyo V, et al. MELD score and clinical type predict prognosis in hepatorenal syndrome: relevance to liver transplantation. Hepatology. 2005;41(6):1282–9. 10.1002/hep.20687
    1. Tsien CD, Rabie R, Wong F. Acute kidney injury in decompensated cirrhosis. Gut. 2013;62(1):131–7. 10.1136/gutjnl-2011-301255
    1. Boyer TD, Sanyal AJ, Wong F, Frederick RT, Lake JR, O’Leary JG, et al. Terlipressin plus albumin is more effective than albumin alone in improving renal function in patients with cirrhosis and hepatorenal syndrome type 1. Gastroenterology. 2016;150(7):1579–89.e2. 10.1053/j.gastro.2016.02.026
    1. Conrad KP. Unveiling the vasodilatory actions and mechanisms of relaxin. Hypertension. 2010;56(1):2–9. 10.1161/HYPERTENSIONAHA.109.133926
    1. Novak J, Parry LJ, Matthews JE, Kerchner LJ, Indovina K, Hanley-Yanez K, et al. Evidence for local relaxin ligand-receptor expression and function in arteries. FASEB J. 2006;20(13):2352–62. 10.1096/fj.06-6263com
    1. Debrah DO, Conrad KP, Jeyabalan A, Danielson LA, Shroff SG. Relaxin increases cardiac output and reduces systemic arterial load in hypertensive rats. Hypertension. 2005;46(4):745–50. 10.1161/01.HYP.0000184230.52059.33
    1. Fallowfield JA, Hayden AL, Snowdon VK, Aucott RL, Stutchfield BM, Mole DJ, et al. Relaxin modulates human and rat hepatic myofibroblast function and ameliorates portal hypertension in vivo. Hepatology. 2014;59(4):1492–504. 10.1002/hep.26627
    1. Smith MC, Danielson LA, Conrad KP, Davison JM. Influence of recombinant human relaxin on renal hemodynamics in healthy volunteers. J Am Soc Nephrol. 2006;17(11):3192–7. 10.1681/ASN.2005090950
    1. Faul F, Erdfelder E, Lang AG, Buchner A. G*Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav Res Methods. 2007;39(2):175–91.
    1. McIntyre CA, Williams BC, Lindsay RM, McKnight JA, Hadoke PW. Preservation of vascular function in rat mesenteric resistance arteries following cold storage, studied by small vessel myography. Br J Pharmacol. 1998;123(8):1555–60. 10.1038/sj.bjp.0701768
    1. Teerlink JR, Cotter G, Davison BA, Felker GM, Filippatos G, Greenberg BH, et al. Serelaxin, recombinant human relaxin-2, for treatment of acute heart failure (RELAX-AHF): a randomised, placebo-controlled trial. Lancet. 2013;381(9860):29–39. 10.1016/S0140-6736(12)61855-8
    1. Escorsell A, Bandi JC, Moitinho E, Feu F, Garcia-Pagan JC, Bosch J, et al. Time profile of the haemodynamic effects of terlipressin in portal hypertension. J Hepatol. 1997;26(3):621–7.
    1. Barthelmes D, Parviainen I, Vainio P, Vanninen R, Takala J, Ikonen A, et al. Assessment of splanchnic blood flow using magnetic resonance imaging. Eur J Gastroenterol Hepatol. 2009;21(6):693–700. 10.1097/MEG.0b013e32831a86e0
    1. Kim SW, Schou UK, Peters CD, de Seigneux S, Kwon TH, Knepper MA, et al. Increased apical targeting of renal epithelial sodium channel subunits and decreased expression of type 2 11beta-hydroxysteroid dehydrogenase in rats with CCl4-induced decompensated liver cirrhosis. J Am Soc Nephrol. 2005;16(11):3196–210. 10.1681/ASN.2004080721
    1. McGuane JT, Debrah JE, Sautina L, Jarajapu YP, Novak J, Rubin JP, et al. Relaxin induces rapid dilation of rodent small renal and human subcutaneous arteries via PI3 kinase and nitric oxide. Endocrinology. 2011;152(7):2786–96. 10.1210/en.2010-1126
    1. Robertson S, Gray GA, Duffin R, McLean SG, Shaw CA, Hadoke PW, et al. Diesel exhaust particulate induces pulmonary and systemic inflammation in rats without impairing endothelial function ex vivo or in vivo. Part Fibre Toxicol. 2012;9:9 10.1186/1743-8977-9-9
    1. Vairappan B. Endothelial dysfunction in cirrhosis: role of inflammation and oxidative stress. World J Hepatol. 2015;7(3):443–59. 10.4254/wjh.v7.i3.443
    1. Salmeron JM, Ruiz del Arbol L, Gines A, Garcia-Pagan JC, Gines P, Feu F, et al. Renal effects of acute isosorbide-5-mononitrate administration in cirrhosis. Hepatology. 1993;17(5):800–6.
    1. Edwards RM. Comparison of the effects of fenoldopam, SK & F R-87516 and dopamine on renal arterioles in vitro. Eur J Pharmacol. 1986;126(1–2):167–70.
    1. Moreau R, Jalan R, Gines P, Pavesi M, Angeli P, Cordoba J, et al. Acute-on-chronic liver failure is a distinct syndrome that develops in patients with acute decompensation of cirrhosis. Gastroenterology. 2013;144(7):1426–37. 10.1053/j.gastro.2013.02.042
    1. Leo CH, Jelinic M, Ng HH, Marshall SA, Novak J, Tare M, et al. Vascular actions of relaxin: nitric oxide and beyond. Br J Pharmacol. 2016. September 2.
    1. Garcia-Martinez R, Noiret L, Sen S, Mookerjee R, Jalan R. Albumin infusion improves renal blood flow autoregulation in patients with acute decompensation of cirrhosis and acute kidney injury. Liver Int. 2015;35(2):335–43. 10.1111/liv.12528
    1. Trebicka J, Leifeld L, Hennenberg M, Biecker E, Eckhardt A, Fischer N, et al. Hemodynamic effects of urotensin II and its specific receptor antagonist palosuran in cirrhotic rats. Hepatology. 2008;47(4):1264–76. 10.1002/hep.22170
    1. Moore XL, Su Y, Fan Y, Zhang YY, Woodcock EA, Dart AM, et al. Diverse regulation of cardiac expression of relaxin receptor by alpha1- and beta1-adrenoceptors. Cardiovasc Drugs Ther. 2014;28(3):221–8. 10.1007/s10557-014-6525-x
    1. Bax L, Bakker CJ, Klein WM, Blanken N, Beutler JJ, Mali WP. Renal blood flow measurements with use of phase-contrast magnetic resonance imaging: normal values and reproducibility. J Vasc Interv Radiol. 2005;16(6):807–14. 10.1097/01.RVI.0000161144.98350.28
    1. Jelinic M, Leo CH, Post Uiterweer ED, Sandow SL, Gooi JH, Wlodek ME, et al. Localization of relaxin receptors in arteries and veins, and region-specific increases in compliance and bradykinin-mediated relaxation after in vivo serelaxin treatment. FASEB J. 2014;28(1):275–87. 10.1096/fj.13-233429
    1. Dschietzig T, Bartsch C, Baumann G, Stangl K. Relaxin-a pleiotropic hormone and its emerging role for experimental and clinical therapeutics. Pharmacol Ther. 2006;112(1):38–56. 10.1016/j.pharmthera.2006.03.004
    1. Ring-Larsen H. Renal blood flow in cirrhosis: relation to systemic and portal haemodynamics and liver function. Scand J Clin Lab Invest. 1977;37(7):635–42. 10.3109/00365517709100657
    1. Ruiz-del-Arbol L, Monescillo A, Arocena C, Valer P, Gines P, Moreira V, et al. Circulatory function and hepatorenal syndrome in cirrhosis. Hepatology. 2005;42(2):439–47. 10.1002/hep.20766
    1. Pereira RM, dos Santos RA, Oliveira EA, Leite VH, Dias FL, Rezende AS, et al. Development of hepatorenal syndrome in bile duct ligated rats. World J Gastroenterol. 2008;14(28):4505–11. 10.3748/wjg.14.4505
    1. O’Brien A, China L, Massey KA, Nicolaou A, Winstanley A, Newson J, et al. Bile duct-ligated mice exhibit multiple phenotypic similarities to acute decompensation patients despite histological differences. Liver Int. 2016;36(6):837–46. 10.1111/liv.12876
    1. Shah N, Dhar D, El Zahraa Mohammed F, Habtesion A, Davies NA, Jover-Cobos M, et al. Prevention of acute kidney injury in a rodent model of cirrhosis following selective gut decontamination is associated with reduced renal TLR4 expression. J Hepatol. 2012;56(5):1047–53. 10.1016/j.jhep.2011.11.024
    1. Fagundes C, Pepin MN, Guevara M, Barreto R, Casals G, Sola E, et al. Urinary neutrophil gelatinase-associated lipocalin as biomarker in the differential diagnosis of impairment of kidney function in cirrhosis. J Hepatol. 2012;57(2):267–73. 10.1016/j.jhep.2012.03.015
    1. Trawale JM, Paradis V, Rautou PE, Francoz C, Escolano S, Sallee M, et al. The spectrum of renal lesions in patients with cirrhosis: a clinicopathological study. Liver Int. 2010;30(5):725–32. 10.1111/j.1478-3231.2009.02182.x
    1. Kobalava Z, Villevalde S, Kotovskaya Y, Hinrichsen H, Petersen-Sylla M, Zaehringer A, et al. Pharmacokinetics of serelaxin in patients with hepatic impairment: a single-dose, open-label, parallel-group study. Br J Clin Pharmacol. 2015;79(6):937–45. 10.1111/bcp.12572
    1. Metra M, Cotter G, Davison BA, Felker GM, Filippatos G, Greenberg BH, et al. Effect of serelaxin on cardiac, renal, and hepatic biomarkers in the Relaxin in Acute Heart Failure (RELAX-AHF) development program: correlation with outcomes. J Am Coll Cardiol. 2013;61(2):196–206. 10.1016/j.jacc.2012.11.005

Source: PubMed

3
Prenumerera