Single-Dose Pharmacokinetics of Milvexian in Participants with Normal Renal Function and Participants with Moderate or Severe Renal Impairment

Vidya Perera, Grigor Abelian, Danshi Li, Zhaoqing Wang, Liping Zhang, Susan Lubin, Akintunde Bello, Bindu Murthy, Vidya Perera, Grigor Abelian, Danshi Li, Zhaoqing Wang, Liping Zhang, Susan Lubin, Akintunde Bello, Bindu Murthy

Abstract

Objective: The aim of this study was to assess the effect of moderate or severe renal impairment on the pharmacokinetic (PK) properties of milvexian.

Methods: This open-label, parallel-group study assessed the PK, safety, and tolerability of a single oral 60 mg dose of milvexian in participants with normal renal function (n = 8; estimated glomerular filtration rate [eGFR] ≥ 90 mL/min/1.73 m2) and participants with moderate (n = 8; eGFR ≥ 30 to ≤ 59 mL/min/1.73 m2) or severe (n = 8; eGFR < 30 mL/min/1.73 m2) renal impairment. Regression analysis was performed using linear regression of log-transformed PK parameters versus eGFR.

Results: Milvexian was well tolerated, with no deaths, serious adverse events, or serious bleeding reported. The maximum milvexian concentration (Cmax) was similar for all groups. Based on a regression analysis of milvexian concentration versus eGFR, participants with eGFR values of 30 and 15 mL/min/1.73 m2, respectively, had area under the curve (AUC) values that were 41% and 54% greater than in participants with normal renal function. Median time to maximum concentration (Tmax) was similar for the three groups (4.5-5.0 h). The half-life increased for participants with moderate (18.0 h) or severe (17.7 h) renal impairment compared with those with normal renal function (13.8 h).

Conclusion: A single dose of milvexian 60 mg was safe and well tolerated in participants with normal renal function and moderate or severe renal impairment. There was a similar increase in milvexian exposure between the moderate and severe renal groups.

Clinical trials registration: This study was registered with ClinicalTrials.gov (NCT03196206, first posted 22 June 2017).

Conflict of interest statement

VP, GA, DL, ZW, SL, AB, and BM are full-time employees of Bristol Myers Squibb. LZ is a full-time employee of Janssen.

© 2022. The Author(s).

Figures

Fig. 1
Fig. 1
Mean (± SD) milvexian plasma concentration versus time profile. SD standard deviation.
Fig. 2
Fig. 2
Predicted values of milvexian PK parameters based on renal impairment from the regression analysis of eGFRa and CrCLb in a moderate and b severe renal impairment. aPredicted values for each PK parameter and associated 90% CI for eGFR (mL/min/1.73 m2) equal to 15, 30, and 90 were obtained from the linear regression model. GMRs of each PK parameter predicted values were calculated for eGFR values of 30: 90 (moderate renal impairment: normal renal function) and 15: 90 (severe renal impairment: normal renal function). bPredicted values for each PK parameter and associated 90% CI for CrCL (mL/min) equal to 15, 30, and 90 were obtained from the linear regression model. GMRs of each PK parameter predicted values were calculated for CrCL values of 30: 90 (moderate renal impairment: normal renal function) and 15: 90 (severe renal impairment: normal renal function). PK pharmacokinetic, eGFR estimated glomerular filtration rate, CrCL creatinine clearance, GMR geometric mean ratio, CI confidence interval, Cmax maximum observed concentration, AUCt area under the plasma concentration-time curve from time zero to time of the last quantifiable concentration, AUC area under the plasma concentration-time curve from time zero extrapolated to infinite time
Fig. 3
Fig. 3
Mean (± SD) aPTT versus time profile. SD standard deviation, aPTT activated partial thromboplastin time
Fig. 4
Fig. 4
Mean (± SD) FXI clotting activity versus time profile. SD standard deviation, FXI Factor XI

References

    1. Cavallari I, Patti G. Efficacy and safety of oral anticoagulation in elderly patients with atrial fibrillation. Anatol J Cardiol. 2018;19(1):67–71. doi: 10.14744/AnatolJCardiol.2017.8256.
    1. Kapil N, Datta YH, Alakbarova N, Bershad E, Selim M, Liebeskind DS, et al. Antiplatelet and anticoagulant therapies for prevention of ischemic stroke. Clin Appl Thromb Hemost. 2017;23(4):301–318. doi: 10.1177/1076029616660762.
    1. Gurbel PA, Fox KAA, Tantry US, Ten Cate H, Weitz JI. Combination antiplatelet and oral anticoagulant therapy in patients with coronary and peripheral artery disease. Circulation. 2019;139(18):2170–2185. doi: 10.1161/CIRCULATIONAHA.118.033580.
    1. Eisen A, Giugliano RP, Braunwald E. Updates on acute coronary syndrome: a review. JAMA Cardiol. 2016;1(6):718–730. doi: 10.1001/jamacardio.2016.2049.
    1. Faxon DP. Use of antiplatelet agents and anticoagulants for cardiovascular disease: current standards and best practices. Rev Cardiovasc Med. 2005;6(suppl 4):S3–14.
    1. Bracey A, Shatila W, Wilson J. Bleeding in patients receiving non-vitamin K oral anticoagulants: clinical trial evidence. Ther Adv Cardiovasc Dis. 2018;12(12):361–380. doi: 10.1177/1753944718801554.
    1. Shpak M, Ramakrishnan A, Nadasdy Z, Cowperthwaite M, Fanale C. Higher incidence of ischemic stroke in patients taking novel oral anticoagulants. Stroke. 2018;49(12):2851–2856. doi: 10.1161/STROKEAHA.118.022636.
    1. Naqvi IA, Kamal AK, Rehman H. Multiple versus fewer antiplatelet agents for preventing early recurrence after ischaemic stroke or transient ischaemic attack. Cochrane Database Syst Rev. 2020;(8):CD009716. 10.1002/14651858.CD009716.pub2
    1. Ten Cate H, Hackeng TM, de Frutos PG. Coagulation factor and protease pathways in thrombosis and cardiovascular disease. Thromb Haemost. 2017;117(7):1265–1271. doi: 10.1160/TH17-02-0079.
    1. Brass LF. Thrombin and platelet activation. Chest. 2003;124(3 Suppl):18S–25S. doi: 10.1378/chest.124.3_suppl.18s.
    1. Lowenberg EC, Meijers JC, Monia BP, Levi M. Coagulation factor XI as a novel target for antithrombotic treatment. J Thromb Haemost. 2010;8(11):2349–2357. doi: 10.1111/j.1538-7836.2010.04031.x.
    1. Emsley J, McEwan PA, Gailani D. Structure and function of factor XI. Blood. 2010;115(13):2569–2577. doi: 10.1182/blood-2009-09-199182.
    1. Salomon O, Steinberg DM, Koren-Morag N, Tanne D, Seligsohn U. Reduced incidence of ischemic stroke in patients with severe factor XI deficiency. Blood. 2008;111(8):4113–4117. doi: 10.1182/blood-2007-10-120139.
    1. Yang DT, Flanders MM, Kim H, Rodgers GM. Elevated factor XI activity levels are associated with an increased odds ratio for cerebrovascular events. Am J Clin Pathol. 2006;126(3):411–415. doi: 10.1309/QC259F09UNMKVP0R.
    1. Gailani D, Gruber A. Factor XI as a therapeutic target. Arterioscler Thromb Vasc Biol. 2016;36(7):1316–1322. doi: 10.1161/ATVBAHA.116.306925.
    1. Salomon O, Steinberg DM, Zucker M, Varon D, Zivelin A, Seligsohn U. Patients with severe factor XI deficiency have a reduced incidence of deep-vein thrombosis. Thromb Haemost. 2011;105(2):269–273. doi: 10.1160/TH10-05-0307.
    1. Pollack CV, Jr, Kurz MA, Hayward NJ. EP-7041, a Factor XIa inhibitor as a potential antithrombotic strategy in extracorporeal membrane oxygenation: a brief report. Crit Care Explor. 2020;2(9):e0196. doi: 10.1097/CCE.0000000000000196.
    1. Sakimoto S, Hagio T, Yonetomi Y, Ono T, Koyama S, Hashimoto A, et al. ONO-8610539, an injectable small-molecule inhibitor of blood coagulation factor XIa, improves cerebral ischemic injuries associated with photothrombotic occlusion of rabbit middle cerebral artery. Presented at the International Stroke Conference; 21–24 February 2017; Houston, TX, USA.
    1. Thomas D, Kanefendt FS, Schwers S, Unger S, Yassen A, Boxnick S. First evaluation of the safety, pharmacokinetics and pharmacodynamics of BAY 2433334 a small molecule targeting coagulation factor XIa in healthy young male participants. Presented at the International Society on Thrombosis and Haemostasis (ISTH) 2020 Virtual Congress; 12–14 July 2020.
    1. Weitz JI, Bauersachs R, Becker B, Berkowitz SD, Freitas MCS, Lassen MR, et al. Effect of osocimab in preventing venous thromboembolism among patients undergoing knee arthroplasty: the FOXTROT randomized clinical trial. JAMA. 2020;323(2):130–139. doi: 10.1001/jama.2019.20687.
    1. Rosenthal RL, Dreskin OH, Rosenthal N. Plasma thromboplastin antecedent (PTA) deficiency; clinical, coagulation, therapeutic and hereditary aspects of a new hemophilia-like disease. Blood. 1955;10(2):120–131. doi: 10.1182/blood.V10.2.120.120.
    1. Franchini M, Veneri D, Lippi G. Inherited factor XI deficiency: a concise review. Hematology. 2006;11(5):307–309. doi: 10.1080/10245330600921964.
    1. Lee SE, Choi YJ, Chi SI, Kim HJ, Seo KS. Factor XI deficiency and orthognathic surgery: a case report on anesthesia management. J Dent Anesth Pain Med. 2015;15(1):25–29. doi: 10.17245/jdapm.2015.15.1.25.
    1. Minnema MC, Friederich PW, Levi M, von dem Borne PA, Mosnier LO, Meijers JC, et al. Enhancement of rabbit jugular vein thrombolysis by neutralization of factor XI. In vivo evidence for a role of factor XI as an anti-fibrinolytic factor. J Clin Invest. 1998;101(1):10–14. doi: 10.1172/JCI781.
    1. Wang X, Smith PL, Hsu MY, Gailani D, Schumacher WA, Ogletree ML, et al. Effects of factor XI deficiency on ferric chloride-induced vena cava thrombosis in mice. J Thromb Haemost. 2006;4(9):1982–1988. doi: 10.1111/j.1538-7836.2006.02093.x.
    1. Preis M, Hirsch J, Kotler A, Zoabi A, Stein N, Rennert G, et al. Factor XI deficiency is associated with lower risk for cardiovascular and venous thromboembolism events. Blood. 2017;129(9):1210–1215. doi: 10.1182/blood-2016-09-742262.
    1. Puy C, Rigg RA, McCarty OJ. The hemostatic role of factor XI. Thromb Res. 2016;141(Suppl 2):S8–S11. doi: 10.1016/S0049-3848(16)30354-1.
    1. Dilger AK, Pabbisetty KB, Corte JR, De Lucca I, Fang T, Yang W, et al. Discovery of milvexian, a high-affinity, orally bioavailable inhibitor of factor XIa in clinical studies for antithrombotic therapy. J Med Chem. 2022;65(3):1770–1785. doi: 10.1021/acs.jmedchem.1c00613.
    1. Wong PC, Crain EJ, Dilger AK, Exler RR, Ewing WR, Gordon D, et al. Small-molecule factor XIa inhibitor, BMS-986177/JNJ-70033093, prevents and treats arterial thrombosis in rabbits at doses that preserve hemostasis. Poster PB0121. Presented at the International Society on Thrombosis and Haemostasis (ISTH) 2020 Virtual Congress; 12–14 July 2020.
    1. Wang X, Qiu L, Du F, Shukla N, Nawrocki A, Chintala M. Antithrombotic effects of a novel small molecule FXIa inhibitor BMS-986177/JNJ-70033093 in a rabbit AV-shunt model of thrombosis. Poster PB0179. Presented at the International Society on Thrombosis and Haemostasis (ISTH) 2020 Virtual Congress; 12–14 July 2020.
    1. Perera V, Wang Z, Luettgen J, Li D, DeSouza M, Cerra M, et al. First-in-human study of milvexian, an oral, direct, small molecule factor XIa inhibitor. Clin Transl Sci. 2021;15(2):330–342. doi: 10.1111/cts.13148.
    1. Perera V, Abelian G, Li D, Wang Z, Zhang L, Lubin S, et al. Single-dose pharmacokinetics of milvexian in participants with mild or moderate hepatic impairment compared with healthy participants. Clin Pharmacokinet. 2022 doi: 10.1007/s40262-022-01110-9.
    1. . NCT03766581. A study on BMS-986177 for the prevention of stroke in patients receiving aspirin and clopidogrel (AXIOMATIC-SSP). Accessed 1 Sep 2020.
    1. Weitz JI, Strony J, Ageno W, Gailani D, Hylek EM, Lassen MR, et al. Milvexian for the prevention of venous thromboembolism. N Engl J Med. 2021;385(23):2161–2172. doi: 10.1056/NEJMoa2113194.
    1. Corpataux N, Spirito A, Gragnano F, Vaisnora L, Galea R, Svab S, et al. Validation of high bleeding risk criteria and definition as proposed by the academic research consortium for high bleeding risk. Eur Heart J. 2020;41(38):3743–3749. doi: 10.1093/eurheartj/ehaa671.
    1. Jackevicius CA, Lu L, Ghaznavi Z, Warner AL. Bleeding risk of direct oral anticoagulants in patients with heart failure and atrial fibrillation. Circ Cardiovasc Qual Outcomes. 2021;14(2):e007230. doi: 10.1161/CIRCOUTCOMES.120.007230.
    1. Vio R, Proietti R, Rigato M, Calo LA. Clinical evidence for the choice of the direct oral anticoagulant in patients with atrial fibrillation according to creatinine clearance. Pharmaceuticals (Basel) 2021;14(3):279. doi: 10.3390/ph14030279.
    1. Alhousani M, Malik SU, Abu-Hashyeh A, Poznanski NJ, Al-Hasan S, Roth DF, et al. Using oral anticoagulants among chronic kidney disease patients to prevent recurrent venous thromboembolism: a systematic review and meta-analysis. Thromb Res. 2021;198:103–114. doi: 10.1016/j.thromres.2020.11.036.
    1. Ocak G, Rookmaaker MB, Algra A, de Borst GJ, Doevendans PA, Kappelle LJ, et al. Chronic kidney disease and bleeding risk in patients at high cardiovascular risk: a cohort study. J Thromb Haemost. 2018;16(1):65–73. doi: 10.1111/jth.13904.
    1. Lutz J, Menke J, Sollinger D, Schinzel H, Thurmel K. Haemostasis in chronic kidney disease. Nephrol Dial Transplant. 2014;29(1):29–40. doi: 10.1093/ndt/gft209.
    1. Hedges SJ, Dehoney SB, Hooper JS, Amanzadeh J, Busti AJ. Evidence-based treatment recommendations for uremic bleeding. Nat Clin Pract Nephrol. 2007;3(3):138–153. doi: 10.1038/ncpneph0421.
    1. Dreisbach AW, Lertora JJ. The effect of chronic renal failure on drug metabolism and transport. Expert Opin Drug Metab Toxicol. 2008;4(8):1065–1074. doi: 10.1517/17425255.4.8.1065.
    1. European Medicines Agency. Committee for Medicine Products for Human Use (CHMP). Note for Guidance on the Evaluation of the Pharmacokinetics of Medicinal Products in Patients with Impaired Renal Function. . Accessed 24 Mar 21.
    1. US Department of Health and Human Services, Food and Drug Administration, Center for Drug Evaluation and Research (CDER), Center for Biologics Evaluation and Research (CBER). Guidance for Industry. Pharmacokinetics in Patients with Impaired Renal Function—Study Design, Data Analysis, and Impact on Dosing and Labeling. . Accessed 24 Mar 2021.
    1. Wong PC, Crain EJ, Bozarth JM, Wu Y, Dilger AK, Wexler RR, et al. Milvexian, an orally bioavailable, small-molecule, reversible, direct inhibitor of factor XIa: in vitro studies and in vivo evaluation in experimental thrombosis in rabbits. J Thromb Haemost. 2022;20(2):399–408. doi: 10.1111/jth.15588.
    1. Weir MR, Kreutz R. Influence of renal function on the pharmacokinetics, pharmacodynamics, efficacy, and safety of non-vitamin K antagonist oral anticoagulants. Mayo Clin Proc. 2018;93(10):1503–1519. doi: 10.1016/j.mayocp.2018.06.018.
    1. Fox KA, Piccini JP, Wojdyla D, Becker RC, Halperin JL, Nessel CC, et al. Prevention of stroke and systemic embolism with rivaroxaban compared with warfarin in patients with non-valvular atrial fibrillation and moderate renal impairment. Eur Heart J. 2011;32(19):2387–2394. doi: 10.1093/eurheartj/ehr342.
    1. Zeitouni M, Giczewska A, Lopes RD, Wojdyla DM, Christersson C, Siegbahn A, et al. Clinical and pharmacological effects of apixaban dose adjustment in the ARISTOTLE trial. J Am Coll Cardiol. 2020;75(10):1145–1155. doi: 10.1016/j.jacc.2019.12.060.
    1. Dias C, Moore KT, Murphy J, Ariyawansa J, Smith W, Mills RM, et al. Pharmacokinetics, pharmacodynamics, and safety of single-dose rivaroxaban in chronic hemodialysis. Am J Nephrol. 2016;43(4):229–236. doi: 10.1159/000445328.
    1. Chang M, Yu Z, Shenker A, Wang J, Pursley J, Byon W, et al. Effect of renal impairment on the pharmacokinetics, pharmacodynamics, and safety of apixaban. J Clin Pharmacol. 2016;56(5):637–645. doi: 10.1002/jcph.633.

Source: PubMed

3
Prenumerera