Splanchnic metabolism of dietary arginine in relation to nitric oxide synthesis in normal adult man

L Castillo, T C deRojas, T E Chapman, J Vogt, J F Burke, S R Tannenbaum, V R Young, L Castillo, T C deRojas, T E Chapman, J Vogt, J F Burke, S R Tannenbaum, V R Young

Abstract

Urinary nitrate (NO3) is the stable end product of nitric oxide, which is formed, in turn, from a guanidino nitrogen of arginine. We have conducted two experiments, each in four healthy adult men receiving a low nitrate diet for 7-10 days, to investigate the in vivo conversion of arginine to nitrate. In the first study [guanidino-15N2, 5,5-2H2]arginine was given on day 7 via a primed continuous intravenous infusion for 8 h. In the second study, the labeled arginine was given for 8 h by the intragastric route on day 7 and by the intravenous route on day 10. Measurement of 15NO3 output in urine collected for 24 h beginning at the time of the arginine tracer infusion revealed a more extensive transfer of 15N when the arginine tracer was given intragastricly. From the comparative labeling of 15NO3 after administration of the tracer arginine via the intragastric and intravenous routes, we estimate that 16% +/- 2% of the daily production of nitrate arises from the metabolism of dietary arginine that is taken up during its "first pass" in the splanchnic region. Hence, nitric oxide production occurs, to a measurable extent, in this area in healthy subjects, raising the question as to how various pathophysiological states might alter the relations between exogenous and endogenous sources of arginine as precursors of NO. and the relative contributions made by various organs to whole body (NO.) NO3 formation. These results also raise important questions about the use of nitric oxide synthase inhibitors in animal and human studies.

References

    1. Biochemistry. 1988 Nov 29;27(24):8706-11
    1. J Biol Chem. 1989 Mar 5;264(7):4038-44
    1. Surgery. 1989 Aug;106(2):364-71; discussion 371-2
    1. Biochem Biophys Res Commun. 1989 Sep 15;163(2):1032-7
    1. Biochem J. 1990 Apr 15;267(2):281-90
    1. FEBS Lett. 1990 Aug 1;268(2):360-4
    1. Am J Physiol. 1991 Jan;260(1 Pt 1):E111-7
    1. Science. 1992 Apr 10;256(5054):225-8
    1. Proc Natl Acad Sci U S A. 1992 Jun 15;89(12):5361-5
    1. Biochemistry. 1992 Jul 28;31(29):6627-31
    1. Proc Natl Acad Sci U S A. 1992 Aug 1;89(15):6711-5
    1. J Chromatogr. 1974 Aug 14;95(2):189-212
    1. Biomed Mass Spectrom. 1981 Apr;8(4):160-4
    1. Proc Natl Acad Sci U S A. 1981 Dec;78(12):7764-8
    1. Anal Biochem. 1982 Oct;126(1):131-8
    1. Cancer Res. 1983 Apr;43(4):1921-5
    1. J Biol Chem. 1983 Jul 10;258(13):8028-38
    1. Nature. 1991 Jun 27;351(6329):714-8
    1. J Biol Chem. 1991 Apr 5;266(10):6259-63
    1. Proc Natl Acad Sci U S A. 1983 Jul;80(14):4518-21
    1. Pharmacol Rev. 1991 Jun;43(2):109-42
    1. Eur J Clin Invest. 1991 Aug;21(4):361-74
    1. J Biol Chem. 1991 Dec 15;266(35):23790-5
    1. J Clin Invest. 1992 Mar;89(3):867-77
    1. J Biol Chem. 1992 Mar 25;267(9):6370-4
    1. Sci Am. 1992 May;266(5):68-71, 74-7
    1. Anal Biochem. 1983 May;131(1):75-82
    1. Carcinogenesis. 1984 Nov;5(11):1381-93
    1. Biomed Mass Spectrom. 1985 Sep;12(9):507-9
    1. Biochim Biophys Acta. 1985 Dec 9;822(3-4):355-74
    1. Proc Natl Acad Sci U S A. 1985 Nov;82(22):7738-42
    1. J Biol Chem. 1987 Jan 5;262(1):203-8
    1. Science. 1987 Jan 23;235(4787):473-6
    1. Nature. 1987 Jun 11-17;327(6122):524-6
    1. J Chromatogr. 1987 Apr 17;392:249-58
    1. Proc Natl Acad Sci U S A. 1987 Sep;84(18):6369-73
    1. Physiol Rev. 1989 Jul;69(3):708-64

Source: PubMed

3
Prenumerera