What part of NO don't you understand? Some answers to the cardinal questions in nitric oxide biology

Bradford G Hill, Brian P Dranka, Shannon M Bailey, Jack R Lancaster Jr, Victor M Darley-Usmar, Bradford G Hill, Brian P Dranka, Shannon M Bailey, Jack R Lancaster Jr, Victor M Darley-Usmar

Abstract

Nitric oxide (NO) regulates biological processes through signaling mechanisms that exploit its unique biochemical properties as a free radical. For the last several decades, the key aspects of the chemical properties of NO relevant to biological systems have been defined, but it has been a challenge to assign these to specific cellular processes. Nevertheless, it is now clear that the high affinity of NO for transition metal centers, particularly iron, and the rapid reaction of NO with oxygen-derived free radicals can explain many of its biological and pathological properties. Emerging studies also highlight a growing importance of the secondary metabolites of NO-dependent reactions in the post-translational modification of key metabolic and signaling proteins. In this minireview, we emphasize the current understanding of the biochemistry of NO and place it in a biological context.

Figures

FIGURE 1.
FIGURE 1.
Model for the cellular targets of NO and associated nitrogen oxides. A, the most sensitive target of NO is sGC, followed by CcOx and NHI. B, reaction of NO with O2 or ROS changes target susceptibility. Under high O2 tensions or conditions of increased free radical production, NO forms oxidation products that react with proteins, lipids, DNA, and FeS centers predominantly over the targets shown in A.

References

    1. Moncada S., Palmer R. M., Higgs E. A. (1991) Pharmacol. Rev. 43, 109–142
    1. Pacher P., Beckman J. S., Liaudet L. (2007) Physiol. Rev. 87, 315–424
    1. Sprigge J. S. (2002) Anaesthesia 57, 357–364
    1. Butler A. R. (2006) J. R Coll. Physicians Edinb. 36, 185–189
    1. Patel R. P., McAndrew J., Sellak H., White C. R., Jo H., Freeman B. A., Darley-Usmar V. M. (1999) Biochim. Biophys. Acta 1411, 385–400
    1. Darley-Usmar V., Halliwell B. (1996) Pharm. Res. 13, 649–662
    1. Bruckdorfer R. (2005) Mol. Aspects Med. 26, 3–31
    1. Thomas D. D., Miranda K. M., Colton C. A., Citrin D., Espey M. G., Wink D. A. (2003) Antioxid. Redox Signal. 5, 307–317
    1. Brookes P. S., Levonen A. L., Shiva S., Sarti P., Darley-Usmar V. M. (2002) Free Radic. Biol. Med. 33, 755–764
    1. Brown G. C. (2001) Biochim. Biophys. Acta 1504, 46–57
    1. Denninger J. W., Marletta M. A. (1999) Biochim. Biophys. Acta 1411, 334–350
    1. Erusalimsky J. D., Moncada S. (2007) Arterioscler. Thromb. Vasc. Biol. 27, 2524–2531
    1. Cooper C. E., Giulivi C. (2007) Am. J. Physiol. Cell Physiol. 292, C1993–C2003
    1. Garthwaite J. (2010) Mol. Cell. Biochem. 334, 221–232
    1. Derbyshire E. R., Marletta M. A. (2009) Handb. Exp. Pharmacol. 191, 7–31
    1. Moncada S., Higgs E. A. (2006) Br. J. Pharmacol. 147, Suppl. 1, S193–S201
    1. Butler A. R., Megson I. L. (2002) Chem. Rev. 102, 1155–1166
    1. Lancaster J. R., Jr. (2004) Science 304, 1905 (Author Reply 1905)
    1. Lancaster J. R., Jr. (1997) Nitric Oxide. 1, 18–30
    1. Trujillo M., Ferrer-Sueta G., Radi R. (2008) Antioxid. Redox Signal. 10, 1607–1620
    1. Szabó C., Ischiropoulos H., Radi R. (2007) Nat. Rev. Drug Discov. 6, 662–680
    1. Beckman J. S. (2009) Arch. Biochem. Biophys. 484, 114–116
    1. McAndrew J., Patel R. P., Jo H., Cornwell T., Lincoln T., Moellering D., White C. R., Matalon S., Darley-Usmar V. (1997) Semin. Perinatol. 21, 351–366
    1. Koppenol W. H. (2001) Redox Rep. 6, 339–341
    1. Alderton W. K., Cooper C. E., Knowles R. G. (2001) Biochem. J. 357, 593–615
    1. Li H., Poulos T. L. (2005) J. Inorg. Biochem. 99, 293–305
    1. Kone B. C., Kuncewicz T., Zhang W., Yu Z. Y. (2003) Am. J. Physiol. Renal Physiol. 285, F178–F190
    1. Dudzinski D. M., Michel T. (2007) Cardiovasc. Res. 75, 247–260
    1. Oess S., Icking A., Fulton D., Govers R., Müller-Ester W. (2006) Biochem. J. 396, 401–409
    1. Sessa W. C. (2004) J. Cell Sci. 117, 2427–2429
    1. Balligand J. L., Feron O., Dessy C. (2009) Physiol. Rev. 89, 481–534
    1. Kleinert H., Pautz A., Linker K., Schwarz P. M. (2004) Eur. J. Pharmacol. 500, 255–266
    1. Finocchietto P. V., Franco M. C., Holod S., Gonzalez A. S., Converso D. P., Arciuch V. G., Serra M. P., Poderoso J. J., Carreras M. C. (2009) Exp. Biol. Med. 234, 1020–1028
    1. Kato K., Giulivi C. (2006) Front. Biosci. 11, 2725–2738
    1. Lundberg J. O., Gladwin M. T., Ahluwalia A., Benjamin N., Bryan N. S., Butler A., Cabrales P., Fago A., Feelisch M., Ford P. C., Freeman B. A., Frenneaux M., Friedman J., Kelm M., Kevil C. G., Kim-Shapiro D. B., Kozlov A. V., Lancaster J. R., Jr., Lefer D. J., McColl K., McCurry K., Patel R. P., Petersson J., Rassaf T., Reutov V. P., Richter-Addo G. B., Schechter A., Shiva S., Tsuchiya K., van Faassen E. E., Webb A. J., Zuckerbraun B. S., Zweier J. L., Weitzberg E. (2009) Nat. Chem. Biol. 5, 865–869
    1. Gladwin M. T., Grubina R., Doyle M. P. (2009) Acc. Chem. Res. 42, 157–167
    1. Gladwin M. T., Kim-Shapiro D. B. (2008) Blood 112, 2636–2647
    1. Lundberg J. O., Weitzberg E., Gladwin M. T. (2008) Nat. Rev. Drug Discov. 7, 156–167
    1. Gladwin M. T. (2006) Adv. Exp. Med. Biol. 588, 189–205
    1. Kim-Shapiro D. B., Schechter A. N., Gladwin M. T. (2006) Arterioscler. Thromb. Vasc. Biol. 26, 697–705
    1. Möller M. N., Li Q., Lancaster J. R., Jr., Denicola A. (2007) IUBMB Life 59, 243–248
    1. Hall C. N., Garthwaite J. (2009) Nitric Oxide 21, 92–103
    1. Rodríguez-Juárez F., Aguirre E., Cadenas S. (2007) Biochem. J. 405, 223–231
    1. Demple B. (2002) Mol. Cell. Biochem. 234–235, 11–18
    1. Zhang Y., Hogg N. (2005) Free Radic. Biol. Med. 38, 831–838
    1. Kleppisch T., Feil R. (2009) Handb. Exp. Pharmacol. 191, 549–579
    1. Thomas D. D., Liu X., Kantrow S. P., Lancaster J. R., Jr. (2001) Proc. Natl. Acad. Sci. U.S.A. 98, 355–360
    1. O'Donnell V. B., Freeman B. A. (2001) Circ. Res. 88, 12–21
    1. Alvarez B., Radi R. (2003) Amino Acids 25, 295–311
    1. Xu S., Ying J., Jiang B., Guo W., Adachi T., Sharov V., Lazar H., Menzoian J., Knyushko T. V., Bigelow D., Schöneich C., Cohen R. A. (2006) Am. J. Physiol. Heart Circ. Physiol. 290, H2220–H2227
    1. Koeck T., Stuehr D. J., Aulak K. S. (2005) Biochem. Soc. Trans. 33, 1399–1403
    1. Aulak K. S., Miyagi M., Yan L., West K. A., Massillon D., Crabb J. W., Stuehr D. J. (2001) Proc. Natl. Acad. Sci. U.S.A. 98, 12056–12061
    1. Brennan M. L., Wu W., Fu X., Shen Z., Song W., Frost H., Vadseth C., Narine L., Lenkiewicz E., Borchers M. T., Lusis A. J., Lee J. J., Lee N. A., Abu-Soud H. M., Ischiropoulos H., Hazen S. L. (2002) J. Biol. Chem. 277, 17415–17427
    1. Shiva S., Oh J. Y., Landar A. L., Ulasova E., Venkatraman A., Bailey S. M., Darley-Usmar V. M. (2005) Free Radic. Biol. Med. 38, 297–306
    1. Antunes F., Boveris A., Cadenas E. (2007) Antioxid. Redox Signal. 9, 1569–1579
    1. Shiva S., Brookes P. S., Patel R. P., Anderson P. G., Darley-Usmar V. M. (2001) Proc. Natl. Acad. Sci. U.S.A. 98, 7212–7217
    1. Ozüyaman B., Grau M., Kelm M., Merx M. W., Kleinbongard P. (2008) Trends Mol. Med. 14, 314–322
    1. Stamler J. S., Singel D. J., Piantadosi C. A. (2008) Nat. Med. 14, 1008–1009 (Author Reply 1009–1010)
    1. Angelo M., Hausladen A., Singel D. J., Stamler J. S. (2008) Methods Enzymol. 436, 131–168
    1. Hogg N. (2002) Annu. Rev. Pharmacol. Toxicol. 42, 585–600
    1. Lopez-Sanchez L. M., Muntane J., de la Mata M., Rodriguez-Ariza A. (2009) Proteomics 9, 808–818
    1. Foster M. W., Hess D. T., Stamler J. S. (2009) Trends Mol. Med. 15, 391–404
    1. Bosworth C. A., Toledo J. C., Jr., Zmijewski J. W., Li Q., Lancaster J. R., Jr. (2009) Proc. Natl. Acad. Sci. U.S.A. 106, 4671–4676
    1. Cooper C. E., Patel R. P., Brookes P. S., Darley-Usmar V. M. (2002) Trends Biochem. Sci. 27, 489–492
    1. Mieyal J. J., Gallogly M. M., Qanungo S., Sabens E. A., Shelton M. D. (2008) Antioxid. Redox Signal. 10, 1941–1988
    1. Neumann H., Hazen J. L., Weinstein J., Mehl R. A., Chin J. W. (2008) J. Am. Chem. Soc. 130, 4028–4033
    1. Schöneich C., Sharov V. S. (2006) Free Radic. Biol. Med. 41, 1507–1520
    1. Venkatraman A., Shiva S., Wigley A., Ulasova E., Chhieng D., Bailey S. M., Darley-Usmar V. M. (2004) Hepatology 40, 565–573
    1. Mantena S. K., Vaughn D. P., Andringa K. K., Eccleston H. B., King A. L., Abrams G. A., Doeller J. E., Kraus D. W., Darley-Usmar V. M., Bailey S. M. (2009) Biochem. J. 417, 183–193

Source: PubMed

3
Prenumerera